Процессы с участием кластеров.

Б.М.Смирнов

- 1. Свойства кластеров и методы их исследования.
- 2. Фундаментальные проблемы физики кластеров
- с парным взамодействием атомов.
- 3. Процессы с участием нанокластеров
- и микрочастиц в газе и плазме.
- 4. Напыление кластеров новые материалы.
- 5. Генераторы кластеров.
- 6. Нанокатализ на основе кластера золота.
- 7. Фрактальные структуры.

Mass-spectrum of photoionization of the magnesium cluster beam.

Martin e.a.1991

Melting point of sodium clusters.

Теоретический анализ кластерных структур и переходов.

- 1. Метод молекулярной динамики.
- 2. Метод «псевдопотенциалов».
- 3. DFT (Density-functional theory).
- 4. Устойчивые кластерные структуры как конфигурационные состояния.

Transitions between local minima of the Potential Energy Surface.

Types of cluster excitations

oscillations

or thermal motion of atoms

configuration excitation

Energies of PES local minima and heights of the barriers for the 13-atom Lennard-Jones cluster.

Distribution on kinetic energies of atoms for Lennard-Jones cluster of 13 atoms

Jellinek, Beck, Berry 1986

Melting criterion.

Structures of Au_{11}^{-} , Au_{12}^{-} and Au_{13}^{-} .

Кластеры и атомные системы с парным взаимодействием атомов.

- 1. Конкуренция кластерных структур.
- 2. Фазовый переход между структурами.
- 3. Модель пустот для фазового состояния атомной системы.
- 4. Модель двух агрегатных состояний и стеклоподобные состояния.
- 5. Теплоемкость кластера (в том числе отрицательная) в области фазового перехода.
- 6. Процесс нуклеации в жидкости как перенос пустот.
- 7. Система частиц с отталкиванием твердое состояние не может быть бесконечным кристаллом.

B.M.Smirnov, R.S.Berry. Phase Transitions of Simple Systems. (Berlin, Springer, 2007)

Definition of aggregate states.

Classical thermodynamics:

Phase is a uniform space distribution of atoms, restricted by boundaries.

An excited aggregate state includes many elementary configuration excitations.

Cluster physics :

An aggregate state is a group of configuration cluster states which correspond to local minima of the potential energy of atoms with nearby energies. One elementary excitation is possible in an excited aggregate state.

Эволюция кластера LJ₁₃.

Coexistence of cluster phases. $p=w_{liq}/w_{sol}, w_{liq}, w_{sol}$ -the probability of the liquid and solid aggregate states. *Define the coexistence range as 0.1 The temperature range of phase coexistence is*

$\delta T \approx 5 / \Delta S$

The coexistence range for the 13-atom Lennard-Jones cluster with argon parameters is 28-46 K, *for the 13-atom nickel cluster is 740 - 980 K,* for the 55-atom Lennard-Jones cluster with argon parameters is 40 - 48 K.

Free energy via a number of voids.

Free energy of bulk argon.

Caloric curve of bulk argon.

Berry and Smirnov, 2001

Decay of an argon glassy state.

Отрицательная теплоемкость кластеров.

The entropy jump at the phase transition of the 13-atom Lennard-Jones cluster.

Berry, Smirnov 2009

The anharmonicity parameter.

 $\eta = \frac{K}{K + U}$

Entropy of melting.

	ΔS_{0}	ΔS _m	$\Delta S_0 / \Delta S_m, \%$
LJ ₁₃	5.2	8.9 ± 0.3	66 ± 3
LJ ₅₅	31 ± 2	45 ± 2	69 ± 7
Bulk inert gas ^{*)}	0.73	1.68 ± 0.03	43 ± 1

 $\Delta S_{0,A} \Delta S_{m}$ are the entropy changes at zero temperature and melting point *) per one atom.

Температура плавления кластера.

$$T_{m} = \frac{\Delta E}{\Delta S}$$
$$T_{m} = \frac{\Delta E(0)}{\Delta S(0)} = 0.55D$$

$$T_m = \frac{\Delta E(T_m)}{\Delta S(T_m)} = 0.30D, E = const; 0.27D, T = const$$

Отсюда следует неприменимость DFT-метода для анализа переходов между конфигурационными состояниями.

p-T phase diagram for Ar melting.

Конфигурации в простых кластерах.

Phase transition in the 13-atom silver cluster.

Phase transition of 13-atom silver cluster.

The parameters of the phase transition : the melting point T_m=820 K, the kinetic energy of atoms E_{kin}=1.16eV, the excitation energy at the melting point E_{ex} =2.89eV, the average potential energy for the solid state U=1.73eV, the anharmonicity parameter $\eta = E_{kin} / E_{ex} = 0.4$, the entropy jump at the melting point $\Delta S_m = \Delta E/T_m = 16.4$, the entropy jump at zero temperature $\Delta S_0 = \ln 1000 = 6.9$, $\Delta S_0 / \Delta S_m = 0.42$

Cross section of the potential energy surface for a metal cluster.

Режимы процессов с участием кластеров в газах.

Процессы с участием кластеров в газе.

- 1. Диффузия и подвижность кластеров в газе.
- 2. Релаксация кластеров в газе.
- 3. Рост кластеров при прилипании к нему атомов.
- 4. Тушение метастабильных атомов в газе с кластерами.
- 5. Горение микрочастиц в кислородсодержащем газе.
- 6. Зарядка микрочастиц в плазме.
- 7. Рекомбинация в плазме, содержащей кластеры.
- 8. Процессы нуклеации : коагуляция, коалесценция, агрегация.
- **B.M.Smirnov. Nanoclusters and Microparticles in Gases and Vapors.** (Berlin, de Gruyeter, 2012)

Модели для нанокластеров и микрочастиц.

Модель жидкой капли.

Число атомов в кластере :

$$n = \left(\frac{r}{r_W}\right)^3,$$

Г_W- радиус Вигнера-Зейтса

Модель твердых сфер – размер области сильного взаимодействия для сталкивающихся частиц мал по сравнению с их размерами. Диффузионное сечение рассеяния атома на кластере :

$$\sigma^* = \pi r^2$$

Температура плавления Ад-кластеров

Диффузия кластеров в газе.

Кинетический режим :
$$D = \frac{3\sqrt{T}}{8\sqrt{2\pi m} \cdot N_a r^2}, r \ll \lambda$$

Диффузионный режим :
$$D = \frac{T}{6\pi r\eta}, r >> \lambda$$

Т- температура газа, r – радиус кластера, λ – длина пробега атомов буферного газа в газе, N_a – плотность атомов буферного газа, η – вязкость газа

Коагуляция в однородном газе.

$$\mathbf{M}_{\mathbf{n}-\mathbf{m}} + \mathbf{M}_{\mathbf{m}} \to \mathbf{M}_{\mathbf{n}}$$

Кинетический режим $n = 6.3(N_b k_o t)^{1.2}, r << \lambda, N_{cl} \Lambda^3 >> 1$

Диффузионный режим сближения, кинетический режим движения

$$k_{as} = 3\sqrt{\frac{2\pi T}{m}} \cdot \frac{1}{N_a r}, r \ll \lambda, N_{cl}\Lambda^3 \ll 1$$

Диффузионный режим сближения, диффузионный режим движения

$$k_{as} = \frac{8T}{\pi\eta}, r \gg \lambda, N_{cl}\Lambda^3 \gg 1$$

 N_a – плотность атомов буферного газа, N_b – плотность связанных атомов в кластерах, N_{cl} – плотность кластеров, λ – длина пробега атомов в буферном газе, Λ – длина пробега кластеров в буферном газе.

Deposition of clusters onto a surface.

Scheme of experiment (Bityurin,Klimov e.a.)

$Al + H_2O \rightarrow H_2$

1,2-electrodes, 3,4-quartz tubes, 5-vortex generator, 6,7-cooling units, 8-power supply, 9-argon storage (container), 10,11-valves, 12,13-gas flow, 14-Al powder injector, 15-plasma, 16-water steam generator

Генератор металлических кластеров.

 1 – поток аргона, 2 – камера, 3 – область возбуждения и испарения,
 4 – инжекция микрочастиц, 5 – поток холодного аргона, 6 – линия тока,
 7 – выход нанокластеров.

Параметры процесса генерации кластеров серебра.

Тепловой баланс для нагреваемых микрочастиц : r = 100 мкм – радиус частицы, T = 2000 К – температура частицы, u =1м/с – скорость аргона, обеспечивающая левитацию частицы.

$$P = P_{rad} + P_{ev} + P_{therm},$$

 $P_{rad} = 0.02W, P_{ev} = 0.7W, P_{therm} = 1W, \xi = 0.4$
P- мощность, поглощаемая частицей, P_{rad} – мощность излучения
частицы, P_{ev} – мощность, затрачиваемая на испарение атомов,

Р_{therm}- мощность, передаваемая газу за счет теплопроводности, ξ – часть энергии, идущей на испарение атомов.

P- N

Скорости процессов при генерации кластеров серебра.

Время испарения микрочастицы $\tau_{ev} = 1.5c$. Первая стадия роста кластеров – превращение испаренных атомов в кластеры $\tau_{cl} = 6$ мкс, среднее число атомов в кластере n=450, средний радиус $r_{cl} = 1.3$ нм.

Температура равновесия между испарением микрочастицы и прилипанием к ней атомов T_c=1900K (p_{Ar}=0.1атм).

Вторая стадия роста кластеров, коагуляция в кинетическом режиме, длится 0.09с и происходит до радиуса 60 нм (число атомов в кластере $n=4*10^7$).

Следующая стадия роста кластеров, коагуляция в диффузионном режиме, происходит медленнее, и увеличение радиуса до 100 нм происходит за 2 с.

Генератор интенсивного пучка металлических кластеров.

Образование металлических кластеров из металл - содержащих молекул (WCl₆).

Bulk metals as catalysts (Haruta 2003).

Processes : oxidation, hydrogenation, reduction of NO_x with hydrocarbons.

Applications : inorganic chemical syntesis, petroleum refinery, environmental protection.

Form : dispersed small metal particles fasten with metal oxides, such as Al₂O₃ and SiO₂.

Catalysts : 3d –metals, Fe, Co, Ni, Cu 4d – metals, Rh, Pd, Ag, 5d-metal, Pt Ru(4d) and Ir(5d) have a limited application, Os has a toxic oxide, and Au is inactive.

Rate of CO-oxidation by NO with Pd-cluster catalyst.

Нанокатализ с кластерами золота.

 $CO + O_2 \rightarrow CO_2 + O \quad (+0.33eV)$ $CO + O \rightarrow CO_2$

Support (подложка) - MgO, TiO₂, Fe₂O₃, CeO₂

Кластер Аи_n, n ≈ 10 Степень покрытия подложки менее 1%.

Нанокатализатор – перспективный материал для автомобильных фильтров –доокисление СО.

Дополнительные применения нанокатализатора золота.

- 1. Устранение запаха в японских туалетах на основе порошка цеолита $NiFe_2O_4$ в результате разложения триметиламина, источника запаха, на N_2 и CO_2 . 2. Сенсор для СО.
- 3. Контроль эмиссии СО.
- 4. Основа батарей и топливных элементов на метане.
- 5. Платиновый катализатор для топливного элемента, использующего процесс $O_2 + 2H_2 \rightarrow 2H_2O$

Oxidation of CO in the air flow with supported gold clusters as a catalyst.

 $P = \frac{1}{1 + A \exp(E_a / T)} , \quad E_a = 0.50 eV, \quad A = 6.4 \cdot 10^{-11}$

Скорость окисления СО в зависимости от степени покрытия поверхности кислородом.

Кластер золота на поверхности MgO.

Конфигурационный анализ каталитического доокисления СО.

- 1. Имеет место конкуренция химического процесса и процесса переноса заряда.
- 2.Е_а =0.5эВ для химического процесса и вероятность Р=6*10⁻¹¹ для процесса переноса заряда.
- 3. В результате переноса заряда система Au₁₀ -CO заряжается отрицательно.
- 4. Электрон, совершающий туннельный переход, находится в определенной точке подложки, а не размазан по ней.
- 5. Электрон берется из О, находящегося на подложке на расстоянии 1-2 нм от кластера.
- 6. Каталитический процесс соответствует переходу между плоской и билинейной структурами кластера Au₁₀ на поверхности подложки.

Berry, Smirnov 2011

Fractal aggregate.

Фрактальная размерность агрегатов SiO₂ в пламени. $n = \left(\frac{R}{a}\right)^{D}$

Горение кремний-содержащего газа.

$CH_4 + C_6 H_{18} Si_2 O$

Fractal fiber.

Спасибо!

Mass-spectrum of inert gas clusters in free jet expansion.

Miele e.a.1989

Magic numbers for sodium clusters.

Mass-spectrum of sodium cluster beam in thermostat.

Melting point of sodium clusters.

Martin e.a.1994

Parameters of the phase transition in the adiabatic case for 13-atom Lennard-Jones cluster.

$$T_{sol}^{m} = \frac{2\eta E_{m}}{33} = (0.33 \pm 0.01) D$$
$$T_{liq}^{m} = \frac{2\eta (E_{m} - \Delta E)}{33} = (0.27 \pm 0.01) D$$
$$\Delta T = T_{sol}^{m} - T_{liq}^{m} = \frac{2\eta \Delta E}{33} = (0.057 \pm 0.001) D$$

Photoelectron spectra of Cu_n, Ag_n, Au_n

Внешние условия для кластеров.

Ensembles of repelling particles.

Ensemble of particles	Boundary conditions
Inert gases at high pressure	External pressure
Hard balls in container	Pressure under weight of balls
Colloid solutions	External pressure
Dusty plasma	Electric traps

Polycrystal structure of colloidal solutions.

P.N.Pusey e.a. Phys.Rev.Lett. **63**,2753(1989)

Poly-methylmethacrylate particles of 170 nm radius are stabilized sterically by 15 nm layers of

- poly-12-hydroxystearic acid.
- They are suspended in a mixture of decalin and carbon disulfide.
- The polydispersity is better than 0.05.

Polycrystal structure is formed in some range of the packing factor. A size of crystallites ranges 10-50 μ m. A number of monomers in a crystallite is $10^5 - 10^7$.

Clusters in catalytic processes.

- 1. Pt-catalysis in heat element with gold clusters $(2H_2 + O_2 \square 2H_2O + electric power)$.
- 2. CO oxidation in air with Au₁₀- clusters as a catalyst.
- 3. Oxydation of hydrocarbon polutions in the atmosphere with Au-clusters as catalysts.

Oxydation of CO by NO with Pd-cluster catalyst. $NO+Pd_n \rightarrow NO-Pd_n$, $CO+NO-Pd_n \rightarrow CO_2+N-Pd_n$

 $2N-Pd_n \rightarrow N_2 + Pd_n$

At $p_{CO}=5*10^{-7}$ mbar, $p_{NO}=1*10^{-4}$ mbar and Pd₈, Pd₃₀ as catalysts the maximum rate constant corresponds to $T_{max}=420-450$ K

This corresponds to the binding energy $\varepsilon_0 = 1.2 \text{ eV}$

Переход диэлектрик-металл в кластере ртути.

