
ЩЕНТР «Интеллектуальные электронные энергосберегающие системы» (ЦИЭС)

Москва, Зеленоград, проезд 4806, д.5, стр.10

Метрологическая и испытательная лаборатории

КАЛИБРОВКА (ПОВЕРКА) РАСХОДОМЕРОВ И СЧЕТЧИКОВ ЖИДКОСТИ

- Диапазон
 воспроизведения
 массового расхода
 воды: 2...36000 кг/ч
- Пределы допускаемой относительной погрешности при измерении массы, объема, массового и объемного расхода воды: 0,05% и 0,1%

Проливная установка массового расхода УРМ ТЕПЛОКОМ-50-0,1/0,05

Калибровка (поверка) расходомеров и счетчиков газа

- Верхний предел воспроизводимого расхода: 16 м³/час
- Предел основной допускаемой погрешности установки:
 не более ± 0,5 %

Установка УП ГСБР-6 для поверки бытовых счетчиков газа и расходомеров газа

Калибровка (поверка) приборов измерения давления

- Диапазоны измерений: от -100...0 кПа
 до -100...1000 кПа
- Измерение тока и напряжения с основной погрешностью не хуже 0,00969%
- Погрешность генерации давления: $\pm 0,009\%$ измеряемой величины

Автоматизированное рабочее место по поверке датчиков давления, образцовых и технических манометров СПДМ-КОН

Испытания на вибропрочность и виброустойчивость

Испытания на воздействие синусоидальной, широкополосной случайной вибрации и многократных ударов

ГОСТ 20.57.406 Метод 102, 103, 104-1, 104-5

- Диапазон частот: 5...4000 Гц.
- Амплитуда ускорения: 50 м/c^2 .
- Широкополосная случайная вибрация: 2,10 кН.
- Синусоидальный профиль:
 3,00 кН.
- · Ударный профиль: 9,00 кH.
- Максимальная скорость вибрации:
 2,2 м/с.

Вибрационная электродинамическая установка *i210/SA1M*

Испытания на ударное воздействие

Испытания на воздействие механических ударов одиночного действия.

Ударные импульсы сложной формы (полусинусоидальной, пилообразной и прямоугольной).

ГОСТ 20.57.406 Метод 106-1

- \cdot Пиковое ударное ускорение: до 10000 м/c^2
- Длительность действия ударного ускорения: 0,5-2 м/с.
- Максимальная масса объекта исследования: 22,7 кг.

Ударный стенд AVEX SM 105-MP

Испытания на воздействие повышенной и пониженной температуры

Испытание на воздействие *повышенной* рабочей и предельной температуры среды.

Испытание на воздействие пониженной рабочей и предельной температуры среды.

ГОСТ 20.57.406 Метод 201, 202-1, 203, 204

- Температура:-70°С ... +180°С
- . Стабильность поддержания: $\pm 0.1 \dots \pm 0.3$

Макетирование и изготовление прототипов

- Создание габаритных моделей деталей и корпусов изделий микросистемной техники по трехмерным моделям.
- Послойное выращивание с использованием фотополимерного материала модели и материала поддержки трехмерных моделей.

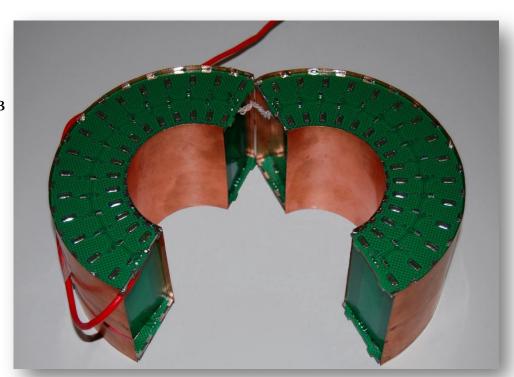
Лаборатория интеллектуальных систем отопления, вентиляции и освещения

Разработка электронных интеллектуальных энергосберегающих приборов, устройств и систем управления для инновационных энергосберегающих технологий учета, распределения и управления энерго- и ресурсопотреблением.

Учебно-демонстрационный комплекс инновационных энергосберегающих приборов, устройств, систем управления технологий студентов слушателей ДЛЯ И курсов повышения квалификации в составе оперативно-диспетчерского пункта управления, интеллектуальной индивидуального пункта, модуля теплового энергосберегающей системы управления, модуля интеллектуальной приточно-вытяжной системы вентиляции с вариабельным расходом воздуха.

Лаборатория интеллектуальных электронных знергосберегающих систем учета энергоресурсов

- Испытательный тепловой стенд элементов энергосберегающих систем предназначен для воспроизведения рабочих условий для испытаний и аттестации измерительных компонентов систем индивидуального учета энергоресурсов: холодной и горячей воды и тепловой энергии водяных систем теплоснабжения.
- В трубопроводах двух циркуляционных контуров стенда установлены радиаторы отопления различной конструкции и места для установки термометров, счетчиков воды, расходомеров воды.



Автоматизированный испытательный тепловой комплекс

Лаборатория технологий и методологии бесконтактного измерения тока в воздушных линиях электропередач

Разрабатываемые технологии и методики бесконтактного измерения тока в ЛЭП должны обеспечить:

- · создание дешевых систем дистанционного измерения тока в ЛЭП;
- возможность измерения тока во всех необходимых точках распределительных сетей для решения задачи внедрения интеллектуальных адаптивных сетей Smart Grid;
- мониторинг показателей энергоэффективности на основе масштабного анализа распределения токов во всех ветвях распределительных сетей.

