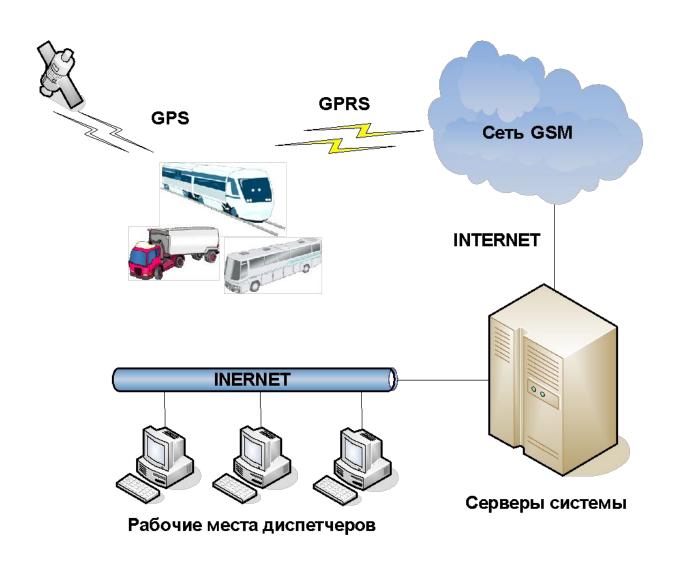


Спутниковые технологии ГЛОНАСС / GPS / Galileo

Система мониторинга подвижных единиц

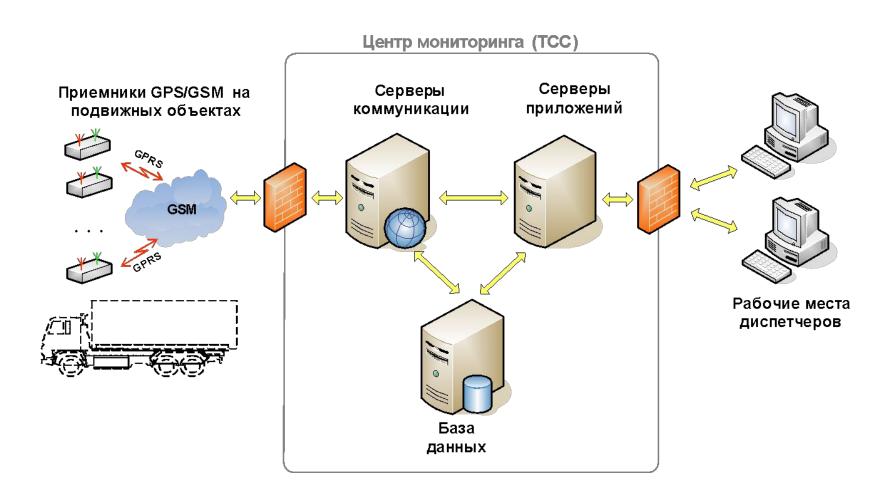
Основные функции системы

- Оперативное управление
 - Оценка текущей обстановки
 - Диспетчеризация объектов
- Контроль выполнения работы
 - Объем работы
 - Качество выполнения работы
- Обмен информацией
 - Передача данных в диспетчерский центр
 - Удаленный контроль параметров работы машин и механизмов, контроль расхода топлива
- Сбор картографической средней точности и инфраструктурной информации
- Формирование подробных отчетов



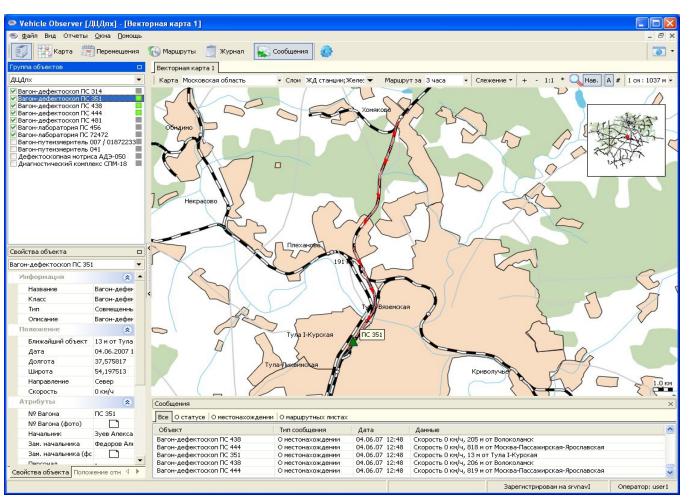
Новые возможности управления перевозками

- Отслеживание и анализ активности подвижных единиц в режиме реального времени, включая точное местоположение, скорость, остановки и т.д.
- Определение транспортного средства, находящегося ближе всех к пункту назначения, отправка этого ТС на задание
- Задание электронных зон, въезд и выезд из которых будет сопровождаться оповещением
- Наблюдение за состоянием транспортных средств благодаря информации, поступающей с различных датчиков: уровня топлива, температуры, открытия/закрытия дверей, подъема кузова и т.д.
- Создание и контроль выполнения маршрутов
- Своевременное выявление вышедших из строя подвижных единиц и отправка техпомощи на место происшествия
- Подсчет должного расхода топлива и сравнение его с заявленным
- Создание полезных отчетов, содержащих подробные данные о тех или иных видах активности подвижных единиц

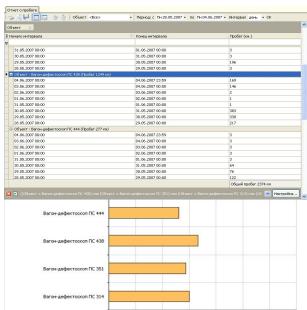


Принцип работы Системы

Архитектура Системы



АРМ диспетчера: функции


- Контроль за подвижными единицами в режиме реального времени
 - Отображение подвижных единиц, их скорости и направления движения, на карте местности
 - Предоставление диспетчеру подробной информации о вверенных ему подвижных единицах, включая показания различных датчиков
 - Режим слежения за выбранной подвижной единицей
- Контроль качества и количества выполняемой работы
 - Создание и отслеживание выполнения маршрутов
 - График скорости движения
 - График суточного пробега
- Анализ и оценка накопленных данных
 - Просмотр истории перемещений на карте местности
 - Формирование различных отчетов в табличной и графической форме

АРМ диспетчера: внешний вид

Эффект от внедрения системы в автоперевозки

• Увеличение производительности за счет:

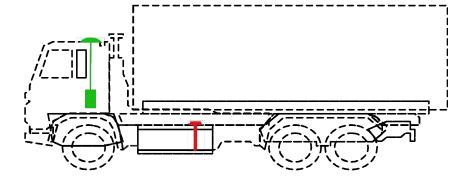
- Повышения эффективности маршрутов
- Уменьшения времени простоя ТС
- Оперативной связи с водителем
- Назначения заданий ближайшим свободным ТС
- Точного определения времени прибытия

• Снижение затрат за счет:

- Устранения возможности использования ТС в личных целях
- Выявления фактов хищения топлива
- Минимизации расходов на страхование

• Повышение безопасности и надежности перевозок за счет:

- Выявления водителей низкой квалификации и водителей, нарушающих скоростной режим
- Индикации случаев въезда и выезда ТС из заданной зоны



Оборудование

Терминал Falcom Stepp II с GPS/GSM антенной

Габариты 88 x 55 x 22, мм Вес 120 г Напряжение питания 10,8-31,2 Рабочие температуры C° -40 +85

Датчик уровня жидкости погружного типа. Предназначен для измерения уровня топлива в топливном баке автомобиля. Требует установки непосредственно в топливный бак.

Принцип действия — емкостной. Диапазон питающих напряжений, В 8 — 14. Диапазон рабочих температур, C° -60 +80. Диапазон рабочих длин датчика, см 5 — 200.

Будущее за системами мониторинга подвижных объектов

- Повышение эффективности, надежности и стабильности перевозок, снижение затрат и улучшение качества услуг
- Снижение затрат, связанных с перевозками и обслуживанием транспортных средств
- Полный контроль над своими транспортными средствами в режиме реального времени, 24 часа в сутки, 7 дней в неделю
- Повышение качества предоставляемых услуг