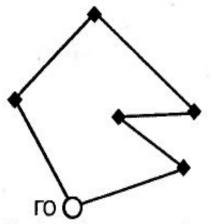
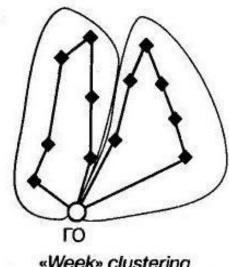

Планирование маршрута доставки груза в смешанном сообщении

В общих чертах

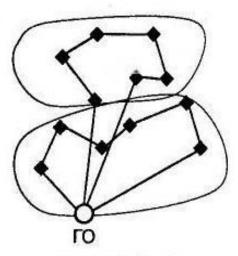

Предметом транспортной логистики является комплекс задач планирования и управления, связанных с перемещением грузов.

Сравнительный анализ «плохого» и «хорошего» вариантов свидетельствуют, что формирование маршрутов должно строиться на известных принципах:

Пути следования транспортных средств не должны пересекаться

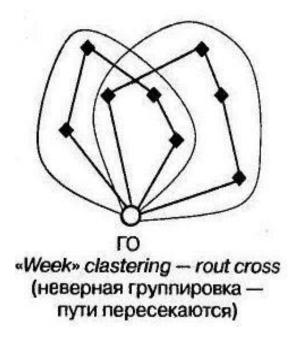


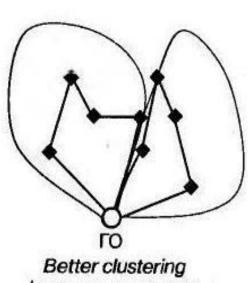
Poor routing — paths cross (маршрутизация неверная пути пересекаются)



Good routing — no paths cross (верная маршрутизация пути не пересекаются)

 Выделение групп обслуживаемых потребителей следует осуществлять с учетом максимально эффективного радиуса


«Week» clustering (неверная группировка)



Better clustering (верная группировка)

Не допускается пересечение сфер обслуживания для разных

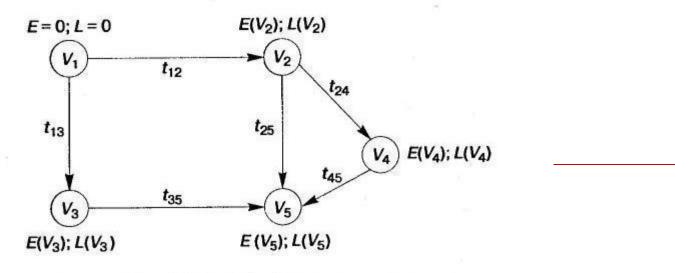
транспортных средств

Better clustering (предпочтительная группировка)

Группировка видов международных перевозок по формам и условиям их организации

Смешанная перевозка

это транспортировка грузовой партии от пункта отправления до пункта назначения, когда в процессе перемещения используется более одного вида транспорта.


Посредством такой системы доставки выполняются условия «точно в срок» и «от двери до двери».

А теперь о главном.

Для планирования смешанной перевозки грузов наиболее актуальной является использование сетевых моделей.

Основным материалом для сетевого планирования является структурная таблица комплекса работ, содержащая:

- Перечень элементарных работ комплекса
- □ Перечень работ, на которые опираются элементарные работы
- Время выполнения каждой работы

Сетевой график и его характеристики

Работы – вектора (дуги). Их проекции на ось времени равны времени их выполнения.

Моменты завершения работ – это узлы графика.

$$t_{ij} = \frac{t_m + 4t_e + t_M}{6}$$

V₁ - исходное событие (критический путь)

E(V₁) – ранние сроки события.

Пусть в юе событие входит несколько работ с номерами k,p,...,z.

Из всех сумм $E(V_k)+t_{ki}$, $E(V_p)+t_{pi}$,..., $E(V_z)+t_{zi}$, $E(V_i)=$ max из найденных значений.

L(V₁) – поздний срок наступления события.

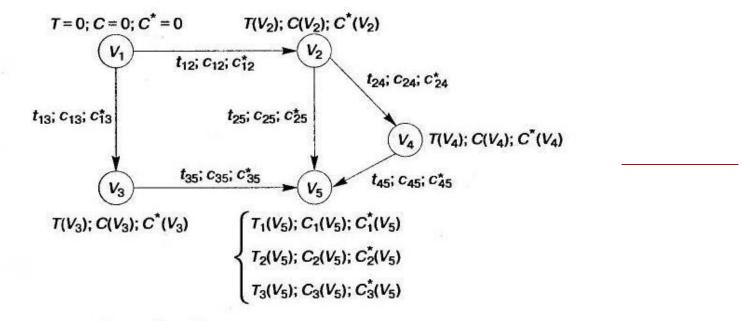
 $L(V_n) = E(V_i)$ для последней работы n.

Из всех разностей $L(V_k)+t_{ik}$, $L(V_p)+t_{ip},...,L(V_z)+t_{iz}$,

 $L(V_i)$ =min из найденных значений.


V₁ - исходное событие (некритический путь)

```
R_{ij} = L(V_i)-E(V_i) – общий резерв.


r_{ij} = E(V_j)-E(V_i) – t_{ij} – свободный резерв.

P_{ij} = E(V_j)-L(V_i) – t_{ij} – независимый резерв
```

Последовательная доставка груза

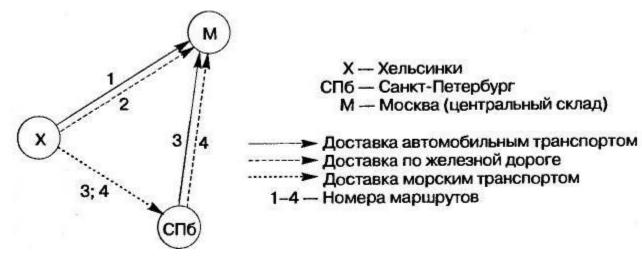
Технологическая схема доставки груза с использованием нескольких видов транспорта

Сетевой график вариантов доставки груза и его характеристики

Критерии выбора вариантов доставки:

- □ Время (T)
- □ Стоимость (С)
- □ Приведённая стоимость, определяемая по формуле $C^* = (C_{\tiny{\mbox{груза+}}} C^{\tiny{\mbox{т}}})(1 + \Delta)^n$, где
- С* оценка стоимости груза и его доставки с учетом фактора времени (интегральная оценка);
- Сгруза закупочная стоимость груза.
- Ст стоимость перевозки;
- $(1+\Delta)^n$ множитель наращивания процентов по процентной ставке Δ за n периодов, n=T/365.

Критерии принятия решения в условиях неопределённости

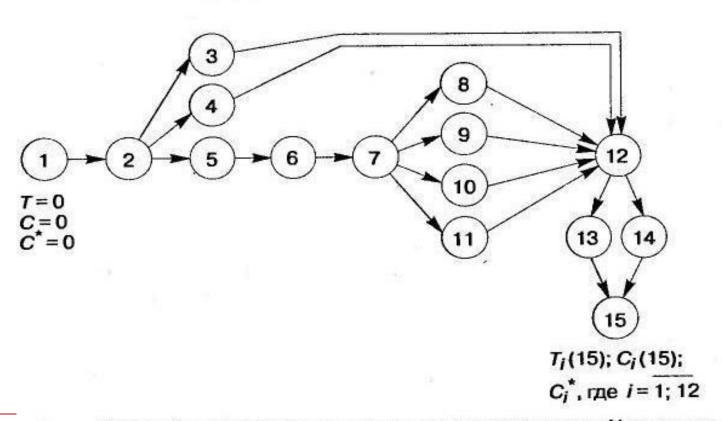

	S ₁	S ₂	***	S_i	***	Sn	
R ₁	V ₁₁	V ₁₂		V1i		Vin	
R ₂	V ₂₁	V_{22}		V_{2i}	•••	V_{2n}	
•••		***	***	2.0			
R _i	V _{j1}	. V _{/2}	•••	V_{ji}		V_{jn}	
	•••	***	***		***	•••	
R _m	V_{m1}	V_{m2}	***	V_{mi}	•••	V_{mo}	

Общий вид матрицы возможных результатов

Пример.

Необходимо осуществить перевозку 20футового контейнера из порта Хельсинки до центрального склада в Москве.

Возможные маршруты доставки (полученные в результате посторонних исследований)



Краткая характеристика вариантов доставки

Номер маршрута	Характеристика	Виды транспорта Авто	
1	ХельсинкиМосква		
2	Хельсинки Москва	Ж/д + авто	
3	Через порт Санкт-Петербург	Морской + авто	
4	Через порт Санкт-Петербург	Морской + ж/д + авто	

Сетевой график задачи

Рис. 10.7. Маршруты по направлению Хельсинки--- Москва

Сетевой график схем доставки грузов по маршруту Хельсинки— Москва (обозначения работ приведены в табл. 10.2)

Работы, включенная в сетевой график, их параметры, время и стоимость.

Работы по доставке грузов по направлению Хельсинки-Москва

№ работы		Характеристика работы -	Стоимость, \$	Время, дн	
1	2	Затаможивание груза в Хельсинки	180	1,0	
2	3	Оформление документов и погрузка на автомобильный транспорт	200	1,0	
2	4	Оформление документов и погрузка на железную дорогу	50	3,0	
2	5	Оформление документов и погрузка на судно в п. Хельсинки	250	2,0	
5	6	Доставки морским транспортом до п. Санкт-Петербург	600	2,0	
6	7	Разгрузка в п. Санкт-Петербург	110	1,0	
7	8	Выпуск контейнера из п. Санкт-Петербург собственными силами с таможенной гарантией*		3,0	
7	9	Выпуск контейнера из п. Санкт-Петербург экспедитором	300	1,0	
7	10	Выпуск контейнера из п. Санкт-Петербург под гарантию таможенного перевозчика		2,0	
7	11	Выпуск груза из п. Санкт-Петербург на железную дорогу	50	4.0	
8	12	Доставка автомобильным транспортом до Москвы (CBX)	650	1,5	
9	12			30.5	
10	12	Доставка таможенным перевозчиком автомобильного транспорта до Москвы (CBX)	850	1,5	
11	12	Доставка железной дорогой из п. Санкт-Петербург в Москву (СВХ)	389	4,0	
3	12	Доставка автомобильным транспортом из Хельсинки до Москвы (СВХ)	1500	4.0	
4	12	Доставка железной дорогой из Хельсинки до Москвы (СВХ)	359	7.0	
12	13	Таможенная очистка груза в Москве собственными силами	150	4,0	
12	14	Таможенная очистка груза в Москве таможенным брокером	300	1,5	
13	15	Доставка по Москве автомобильным транспортом от СВХ до терминала		0,5	
14	15	грузополучателя	V		

Для выпуска контейнера собственными силами грузовладелец должен быть владельцем склада временного хранения (СВХ) и иметь возможность оформлять гарантийный сертификат.

Значения параметров по каждому варианту доставки

Результаты расчета параметров для различных схем доставки

№ ћаршрута	Схема доставки	Время <i>Т</i> , дн.	Стоимость С, у. е.	Приведенная стоимость С, у. е.
1 (1)	1, 2, 3, 12, 13, 15	10,5	2080	37229,38
1 (2)	1, 2, 3, 12, 14, 15	8,0	2230	37344,22
2 (3)	1, 2, 4, 12, 13, 15	15,5	1089	36303,83
2 (4)	1, 2, 4, 12, 14, 15	13,0	1239	36419,84
3 (5)	1, 2, 5, 6, 7, 8, 12, 13, 15	15,0	2040	37253,36
3 (6)	1, 2, 5, 6, 7, 8, 12, 14, 15	12,5	2190	37368,43
3 (7)	1, 2, 5, 6, 7, 9, 12, 13, 15	13,0	2290	37476,09
3 (8)	1, 2, 5, 6, 7, 9, 12, 14, 15	10,5	2440	37590,83
3 (9)	1, 2, 5, 6, 7, 10, 12, 13, 15	14,0	2190	37389,90
3 (10)	1, 2, 5, 6, 7, 10, 12, 14, 15	11,5	2340	37504,79
4 (11)	1, 2, 5, 6, 7, 11, 12, 13, 15	18,5	1779	37040,46
4 (12)	1, 2, 5, 6, 7, 11, 12, 14, 15	16,0	1929	37155,94

Привидение параметров в относительный вид для получение сопоставимых результатов

Поделим элементы каждого столбца на его min значение Относительные значения параметров по маршруту Хельсинки—Москва

№ маршрута	Схема доставки	Относительные значения параметров		
	No. 14-7-15-0 Secondo Superior S	T	С	C*
1 (1)	1, 2, 3, 12, 13, 15	1,3125	1,9100	1,0255
1 (2)	1, 2, 3, 12, 14, 15	1,0000	2,0478	1,0287
2 (3)	1, 2, 4, 12, 13, 15	1,9375	1,0000	1,0000
2 (4)	1, 2, 4, 12, 14, 15	1,6250	1,1377	1,0032
3 (5)	1, 2, 5, 6, 7, 8, 12, 13, 15	1,8750	1,8733	1,0262
3 (6)	1, 2, 5, 6, 7, 8, 12, 14, 15	1,5625	2,0110	1,0293
3 (7)	1, 2, 5, 6, 7, 9, 12, 13, 15	1,6250	2,1028	1,0323
3 (8)	1, 2, 5, 6, 7, 9, 12, 14, 15	1,3125	2,2406	1,0355
3 (9)	1, 2, 5, 6, 7, 10, 12, 13, 15	1,7500	2,0110	1,0299
3 (10)	1, 2, 5, 6, 7, 10, 12, 14, 15	1,4375	2,1488	1,0331
4 (11)	1, 2, 5, 6, 7, 11, 12, 13, 15	2,3125	1,6336	1,0203
4 (12)	1, 2, 5, 6, 7, 11, 12, 14, 15	2,0000	1,7713	1,0235

Строки — возможные действия R_j (варианты доставки грузов); столбцы — возможные состояния «природы» S_i (критерии доставки); элементы матрицы — результат при выборе j-го действия и реализации i-го состояния V_{ji} .

Критерий Лапласа на примере

(определение значения искомых критериев)

Принцип недостаточного основания:

Все состояния природы $S_i(i=1,...,n)$ - равновероятны. $q_i=1/n=1/3$

Среднее арифметическое потерь:

$$M_j(R) = \frac{1}{n} \sum_{i=1}^n V_{ji}$$

 $M_1 = 1/3 * (1,3125 + 1,9100 + 1,0255) = 1,4160$ M_i = аналогично.

 $W=min\{M_j(R)\}$ W – значение параметра, соответствующее варианту доставки груза.

 $\min\{M_j\}$ будет соответствовать искомому варианту доставки.

Критерий Вальда на примере

(определение значения искомых критериев)

Принцип наибольшей осторожности.

Если V_i – потери, находим в каждой строке находим $\max\{V_{ii}\}$.

$$W = \min_{j} \max_{i} \{V_{ji}\}$$

Определяем наибольший элемент в каждой строке:

1,9100 - для первого маршрута

2,0478 – для второго

Критерий Сэвиджа на примере

(определение значения искомых критериев)

Использование матрицы рисков.

$$r_{ji} = V_{ij} - \min_{j} \{V_{ji}\}$$

 $W = \min_{j} \max_{i} \{r_{ji}\}$

$$r_{11} = 1,3125-1,00=0,3125$$

 $r_{12} = 1,9100-1,00=0,9100$
 $r_{13} = 1,0255-1,00=0,0255$
 $max r_{ij} = 0,9100$

Критерий Гурвица на примере

(определение значения искомых критериев)

- Природа может находиться в самом невыгодном состоянии с вероятностью (1-а)
- И в самом выгодном состоянии с вероятностью а.
- а коэффициент доверия.
- Если элементы матрицы потери, то: $W=\min_{j}[amin_{i}V_{ji}+(1-a)max_{i}V_{ji}]$

$$a=0,5$$
 $0,5*1,0255 + 0,5*1,9100=1,4559$

Результаты расчётов по всем критериям

Выбор схемы доставки по критериям принятия решения

№ маршрута, <i>ј</i>	Критерий Лапласа, <i>М_/(R</i>)	Критерий Вальда, max (<i>V_{Ji}</i>)	Критерий Сэвиджа, max (<i>r_{ji}</i>)	Критерий Гурвица, αmin V _{ji} + + (1 – α) max V _{ji}
1 (1)	1,4160	1,9100	0,9100	1,4678
1 (2)	1,3588	2,0478	1,0478	1,5239
2 (3)	1,3125	1,9375	0,9375	1,4688
2(4)	1,2553	1,6250	0,6250	1,3141
3 (5)	1,5915	1,8750	0,8750	1,4506
3 (6)	1,5343	2,0110	1,0110	1,5202
3 (7)	1,5867	2,1028	1,1028	1,5676
3 (8)	1,5295	2,2406	1,2406	1,6380
3 (9)	1,5970	2,0110	1,0110	1,5205
3 (10)	1,5398	2,1488	1,1488	1,5909
4 (11)	1,6555	2,3125	1,3125	1,6664
4 (12)	1,5983	2,0000	1,0000	1,5117
Минимальное значение	1,2553	1,6250	0,6250	1,3141

BCë!