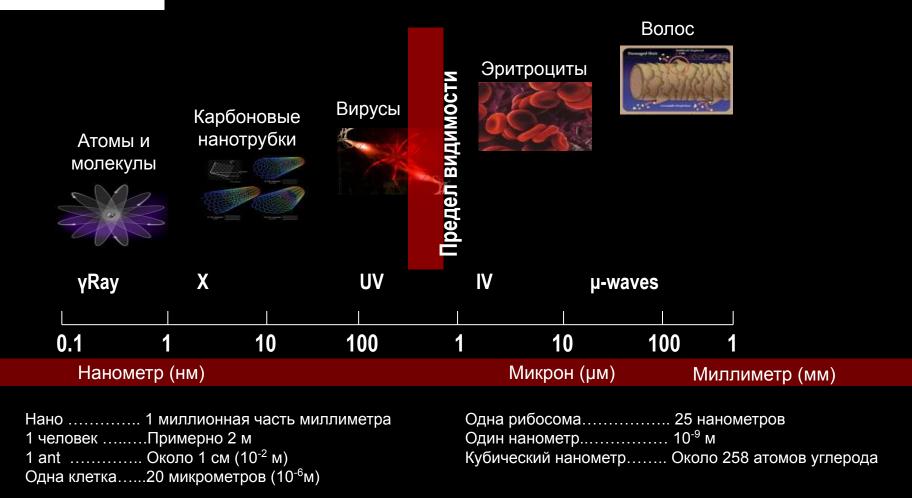
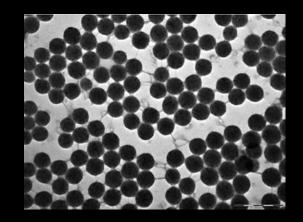

Deptide **J**latinum

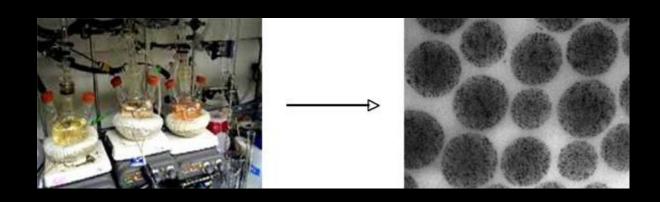


Нанотехнологии и их потенциал

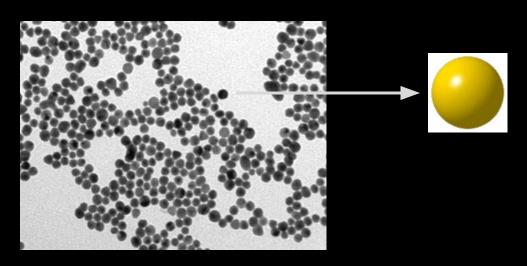
Изучение, проектирование, создание, синтез, манипулирование и применение материалов в нанометровой шкале, что эквивалентно одной миллионной части миллиметра.


"Крупнейший Мировой научный переворот имеет место на мельчайшем уровне, в таком маленькой шкале величин, что это остается незамеченным для большинства населения"

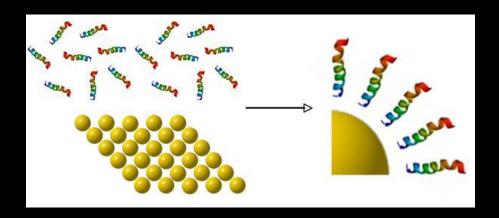
что такое Нано?


Нанотехнология, Современный взгляд

- Нанотехнология предоставляет исключительные возможности для проектирования новых биомедицинских активных соединений и для создания новых оригинальных или усовершенствования уже существующих инструментов.
- Их можно разделить по категориям таким как нанотрубки, нанопровода, нанооболочки, наночастицы, квантовые точки, дендримеры, биополимеры.
- Наночастицы были предложены в качестве биомедицинских приспособлений для различного применения благодаря их универсальному характеру.
- Благодаря ряду выгодных аспектов, включая особую площадь поверхности и адсорбционную энергию, возможным становиться физически крепкое присоединение активных биомолекул.


Наночастицы Металлов

- В настоящее время ряд применений ограничивается количеством таких наночастиц.
- Наночастицы металлов стабилизированные органическими молекулами создают новый класс нано-структурных материалов, отличающихся как от обычного массивного материала, так и от единичных атомов металла.
- Наша стратегия синтеза заключается в быстрой инъекции органо-металлических реагентов, содержащих требуемый элемент в растворителе и в присутствии молекул ПАВ (а также восстановителя в ряде случаев), таким образом производя временно дискретное гомогенное зародышеобразование, которое в значительной степени используется для получения наночастиц металлов.

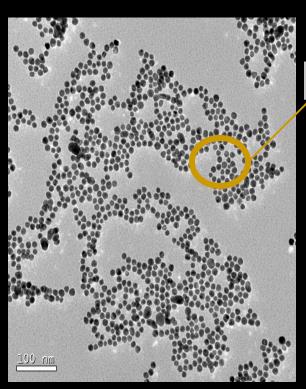

Наночастицы Платины

- наночастицы платины обладают рядом полезных физических свойств, таких как:
 - уникальные оптические свойства
 - стабильность и прочность
 - биосовместимость и большая площадь поверхности,
- Это делает их идеальными кандидатами для биомедицинского применения.
- Наночастицы платины способны улучшить молекулярную доставку, непосредственно путем усовершенствованием фармакокинетики и биораспределения для увеличения растворимости и эффективности и, также для связывания молекул и «скрытия» нежелательных реакций, сопряженных с использованием биоматериалов в наномасштабе и уменьшая таким образом их побочных эффектов.

биоконьюгированные наночастицы

- Наночастицы платины, связанные с различными биомолекулами, в течение последних лет начали применяться в материаловедении и в биологических исследования.
- Среди множества биологических полимеров, которые могут быть связаны с наночастицами, протеины и пептиды вызывают наибольший интерес, в силу присущей им программируемости и биологической активности.
- Они были предложены для доставки лекарственных веществ, клеток-мишеней, тканевой и клеточной инженерии.

Platinum- Peptides


Преимущества:

Технология коньюгирования
Пептида с Наночастицами
Платины предлагает то лучшее,
что есть в обоих «мирах»:

- направленное избирательное действие и высокая биоактивность пептида
- стабильность и биодоступность
- фокусировка на высокую концентрацию пептида

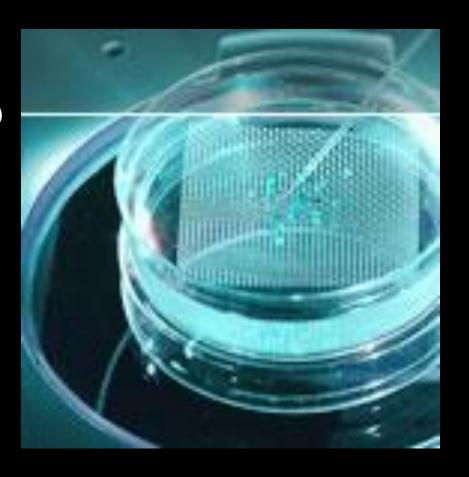
Применяемая технология создания:

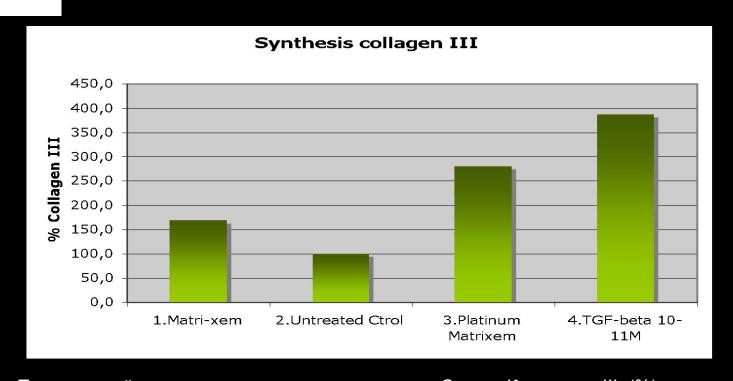
- Сконструированный Пептид и Наночастицы Платины создаются по отдельности стандартными методами
- Непосредственно Связывание происходит на последнем этапе
- N-терминал пептида замещается линкером, обогащенным тиолами, например, липоевой кислотой
- Для введения липоевой кислоты применяется традиционная химию пептидов
- Каждый пептид связан с двумя атомами золота на поверхности
- Данные изменения не оказывают влияния на пептидную последовательность

Platinum Matrix-em

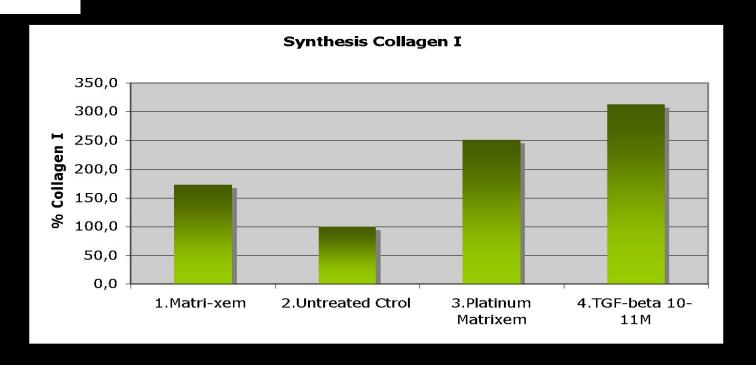
Platinum Matrix-em это синтетический пептид (пальмитоил гептапептид), отличающийся уникальным сильным эффектом в отношении синтеза коллагена, наноконью гированный с коллоидными частицами платины

Platinum Matrix-EM

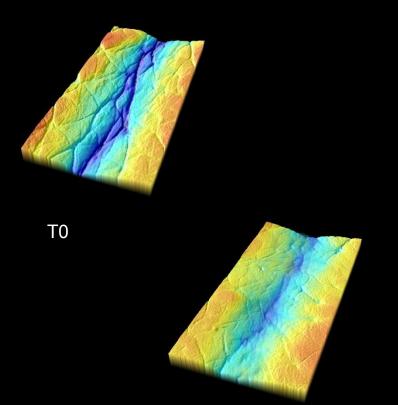

In vitro


Синтез коллагена III (collagen III)

Синтез коллагена I (collagen I)


In vivo

Микрорельеф кожи



Тестируемый продукт	Синтез Коллагена III (%)
Matrix-EM (без платины)	168,54
Контроль (необработанный)	100,00
Platinum Matrix-Em 0.3%	280,32
Фактор роста TGF-beta	387,89

Тестируемый продукт	Синтез Коллагена I (%)
Matrix-EM (без платины)	172,36
Контроль (необработанный)	100,00
Platinum Matrix-EM 0.3%	250,15
Фактор роста TGF-beta	312,11

• **Цель**: оценить способность Platinum Matrix-EM сокращать морщины в рабочей концентрации 0,3%

•Методология:

- Определение макрорельефа кожи по силиконовым слепкам с области вокруг глаз, полученным от 15 волонтеров.
- длительность 4 недели (28 дней), анализ образцов до начала применения 0 день и после окончания 28 день.
- Средняя неровность поверхности (морщинистость) оценивалась с помощью конфокальной профилометрией (confocal profilemetry) с использованием прибора Profilemeter PIµ и стереоскопического микроскопа Optech ST3

• Результаты:

• Уменьшение морщин на 61%

Применение

Омоложение, средства anti-aging

Концентрация

0,2 - 0,5 %

İnci Название

acetyl tetrapeptide-17 (and) colloidal platinum

