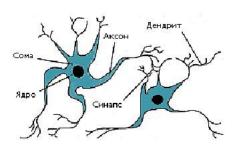


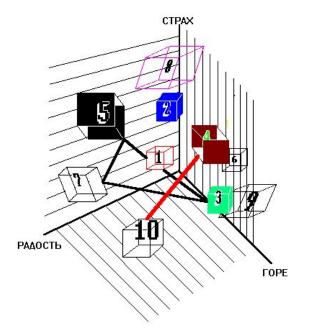
www.clinicpsy.ucoz.ru

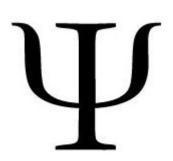
Автоматизированная система контроля знаний

Составляющие системы:

- 1 Экзаменационные вопросы (подобраны и сформулированы уже сотни вопросов).
- 2 Автоматизированная система экзаменования.
- 3 Математическая модель педагогических измерений.
- 4 Собственная программа обработки данных.
- 5 Результаты апробации системы на выборке студентов ППФ.
- 6 Внедрение системы в эксплуатацию.

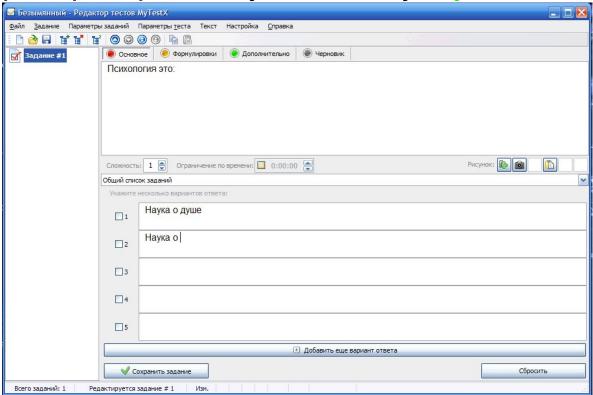

*


- выполненные пункты.
- то, что предстоит сделать


Экзаменационные вопросы

Экзаменационные вопросы сформулированы по таким дисциплинам как:

- Анатомия ЦНС
- Физиология ЦНС
- Клиническая психология
- Психиатрия
- И ряд других.



Автоматизированная система экзаменования.

 На данном этапе исследований для сбора данных планируется использовать свободно распространяемую систему MyTest

Окно программы MyTest (конструирование вопроса)

Математическая модель измерений

Стандартная модель IRT

1)Правильный ответ на вопрос – функция уровня знаний студента и трудности вопроса

2)Вероятность того что данный человек правильно ответит на данный вопрос дается функцией:

$$P(правильного ответа) = \frac{e^{\theta}}{e^{\theta} + e^{\delta}}$$

Где θ – уровень знаний студента и δ – трудность данного задания. Модель предлагаемая нами:

Ответ на вопрос – функция расстояний в семантическом пространстве (СП) от образа вопроса до образов вариантов ответов:

Пример СП.

Дистрактор — правдоподобный отвлекающий вариант ответа

Формула вероятности правильного ответа

$$P = \frac{e^{-|\theta_{\text{uct.}}|}}{e^{-|\theta_{\text{uct.}}|} + [e^{-|\delta_{\text{uct.}}|}]^*(k-1)}$$

Где: $\theta_{\text{ИСТ}}$

Расстояние от вопроса до правильного ответа

бист.

Расстояние от вопроса до неправильного варианта

k – число вариантов ответа

Математическая модель измерений (продолжение)

Стандартная модель IRT

Модель предлагаемая нами:

Обоснование:

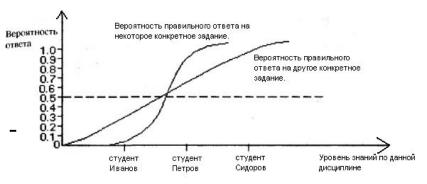
Функция вероятности правильного ответа удовлетворяет следующим условиям:

-Р(правильного ответа) растет с увеличением уровня знаний. -абсолютно неподготовленный участник тестирования никогда не ответит правильно -участник чей уровень знаний во много раз превышает уровень трудности вопроса ответит правильно с P=1

Обоснование:

Наша функция удовлетворяет всем условиям слева. Кроме того наша модель была выведенна как частный случай теории выбора по сходству (Similarity Choice Model), проверенной в экспериментах с выбором. В них испытуемый должен опознать предъявленный ему стимул (например прочитать букву). Вероятность того что на определенный стимул будет дан определенный ответ:

$$P(S \longrightarrow S_{\text{предъявл.}})$$
 $= \frac{e^{-c^*D_{\text{между предъявл. и названным}}}{e^{-c^*D_{\text{между предъявленным и і-тым}}} e^{-c^*D_{\text{между предъявленным и і-тым}}}$


Из этой формулы можно получить нашу модель экзамена если рассматривать вопрос как стимул, а варианты как ответы.

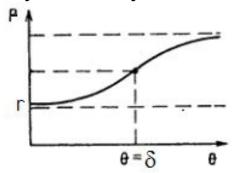
Математическая модель измерений (окончание)

Стандартная модель IRT

Минусы:

Некоторые вопросы могут апеллировать к знаниям больше чем по одной дисциплине. Для таких вопросов кривая θ Vs. P отв. становится менее крутой. Учет этого в модели введением параметров крутизны делает результат сомнительным

-Учет угадывания введением еще одного оцениваемого параметра делает результат еще ненадежнее.


Модель предлагаемая нами:

Плюсы:

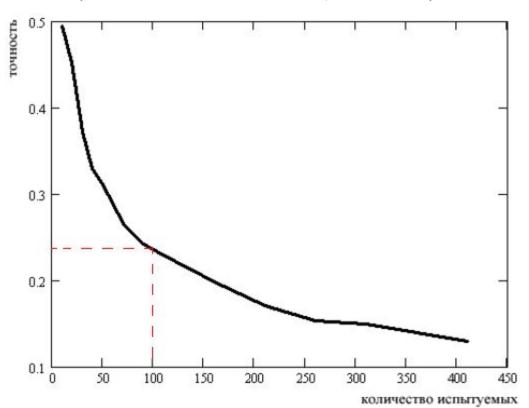
Учет числа вариантов ответа -Наложив условие

$$|\delta$$
ист. $|\geqslant |\theta$ ист.

получим, что вероятность правильного ответа не опускается ниже r=1/k (эффект случайного угадывания)

Планируется обеспечить одинаковую крутизну кривых вопросов, проведя оценку вопросов экспертами, с отбраковкой вопросов, оцененных как невалидные.

Программа обработки (проект)


Компьютерная программа обработки должна уметь:

- -Получать на входе массив нулей и единиц, описывающий результаты выполнения каждым испытуемым каждого задания и выдавать оценки | Фист | и | бист | в интервальной шкале что соответствует уровню знаний и трудности задания в стандартной модели.
- -Для оценки параметров использовать метод максимального правдоподобия (наиболее точный).
- -Вычислять меру качества подгонки данных к модели (типа Хи-квадрат).
- -Вести базу данных трудностей заданий и базу уровней знаний экзаменуемых.

Планируемое исследование выборки и шкала оценки.

Планируется собрать данные об экзаменах у 100 студентов.

В литературе описан график, полученный методом численной симуляции, и связывающий объем выборки с точностью оценки величин уровня знаний. Видно, что при объеме выборки в 100 чел, уровень знаний каждого оценивается с погрешностью примерно +-0,25. Т.к. уровень знаний изменяется от -3 до +3, фактически знания каждого из первых 100 студентов можно оценить по 10-12 балльной шкале. В дальнейшем, по мере эксплуатации системы и накопления данных ошибка оценки будет уменьшаться, пока не достигнет теоретического предела — разрешающей способности теста, зависящей от числа заданий в тесте.

