Изучение адсорбции комплексов никеля, меди и железа с основаниями Шиффа на поверхности углеродных материалов и ее влияние на структуру образующихся полимерных пленок

02.00.04 – Физическая химия

Положенцева Юлия Александровна

Цель работы -

изучение закономерностей адсорбции комплексов никеля, меди и железа с основаниями Шиффа на углеродных материалах (чешуйчатом графите и стеклоуглероде), а также установление связи между строением адсорбционного слоя и структурой образующихся полимерных комплексов

Научная новизна

- Впервые получены количественные данные по адсорбции комплексов никеля (II), меди (II) и железа (III) на поверхности чешуйчатого графита
- Впервые получены данные о емкости двойного электрического слоя (ДЭС) стеклоуглеродного электрода в ацетонитрильных растворах комплексов никеля (II), меди (II), железа (II) и железа (III) с основаниями Шиффа различной концентрации
- Впервые получены данные о морфологии адсорбционных слоев на основе комплексов никеля (II) и меди (II) с основаниями Шиффа методом атомно-силовой микроскопии.

Практическая значимость

Показана возможность прогнозирования структуры и свойств полимерных пленок комплексов никеля (II), меди (II), железа (II) и железа (III) с основаниями Шиффа на основе изучения закономерностей их адсорбции.

Объекты исследования

M = Cu (II), Ni (II), Fe (II); R = H, - [M(SalEn)] – N, N'-этилен-бис(салицилидениминато)металл (II); R = CH₃O, - [M(CH₃O-SalEn)] – N,N'-этилен-бис(3-метоксисалицилидениминато) металл (II).

[Fe(SalEn)Cl] - N, N'-этилен-бис(салицилидениминато)хлор железо (III).

Изучение адсорбции комплексов на поверхности чешуйчатого графита

Марка графита	Гранулометрический состав (мас. %)			Зольность, мас. %, не	Насыпной
	> 0,315 мм	> 0,16 мм	< 0,16 мм	более	Bec, T/M ⁻³
«FG+198»	2,2	69,8	28,0	2,0	0,48

 $\Delta n = (C^0 - C) \cdot V$

С⁰ и С - концентрации комплексов в исходном растворе и в растворе, в котором часть растворенного вещества адсорбировалась на поверхности графита; V - объем раствора;

$$\Gamma = \frac{\Delta n}{A}$$

А - удельная поверхность графита.

Изотерма адсорбции комплекса [Ni(SalEn)] Г×10⁶, моль/м²

 $\Gamma_{\text{max}} = (4,5 \pm 1,5) \times 10^{-6} \text{ моль/м}^2.$

Изотерма адсорбции комплекса [Ni(CH₃O-SalEn)]

 $\Gamma \times 10^6$, моль/м²

Изотерма адсорбции комплекса [Ni(CH₃O-SalEn)], полученная на чешуйчатом графите при температуре $(25 \pm 3)^{\circ}$ С, описанная изотермой БЭТ. $\Gamma_{\text{max}} = (8 \pm 2) \times 10^{-6} \text{ моль/м}^2$.

Вычисление термодинамических параметров, характеризующих адсорбцию комплексов металлов

 $\Delta(\Delta G^0_{A,G}) = \Delta G^0_{A,G} - (\Delta G^0_{A,G})^{air}$

 $\Delta G^0_{A,G}$ - энергия Гиббса адсорбции, соответствующая изотерме Генри; $(\Delta G^0_{A,G})^{air}$ - энергия Гиббса адсорбции на границе воздух/раствор.

 $f^{\infty} \cong \frac{1}{X^{sat}}$

 f^{∞} - коэффициент активности вещества в объеме раствора;

X^{sat}- мольная доля растворенного вещества в насыщенном растворе.

 $\ln f^{\infty} \cong p_1 \ln f^{ads}$ $p_1 = 2.1 \pm 0.1$

 f^{ads} - коэффициент активности вещества в поверхностном слое.

Адсорбционные параметры для комплексов никеля (II)

Комплекс	$\Gamma_{ m max} imes 10^{6},$ моль/м 2	$\Delta G^0_{\scriptscriptstyle A,G}$, кДж/моль	$\Delta(\Delta G^0_{\scriptscriptstyle A,G}),$ кДж/моль	$f^{\it ads}$
[Ni(SalEn)]	4,5	-24,5	-14,0	46
[Ni(CH ₃ O-Sa lEn)]	8,0	_	_	22

Термодинамические параметры, характеризующие адсорбцию комплексов [Ni(SalEn)] и [Ni(CH₃O-SalEn)] на поверхности чешуйчатого графита при температуре $(25 \pm 3)^{0}$ С

Метод спектроскопии фарадеевского импеданса

С_{dl} – емкость ДЭС; f_{max} – значение частоты, выраженное в Гц; R_{ct} – сопротивление переносу заряда.

Эквивалентная схема электрической ячейки: R_s - омическое сопротивление раствора электролита, Z_W - импеданс Варбурга, соответствующий условиям полубесконечной диффузии.

Состав растворов, содержащих различные концентрации комплекса металла: С $((C_5H_5)_2Fe) = 1 \times 10^{-3}$ моль/л, С $((Et_4N)BF_4) = 0,1$ моль/л. Рабочее значение потенциала 0,44 В, амплитуда переменного напряжения 5 мВ, диапазон частот 0,1 – 100 000 Гц.

Изменение емкости ДЭС в растворах комплексов никеля (II)

0,003

0

0,000

Зависимость изменения емкости ДЭС в растворах комплексов [Ni(SalEn)] и [Ni(CH₃O-SalEn)] по сравнению с раствором фонового электролита от концентрации комплекса в растворе.

0,006

0,009 С. моль/л

Стековая модель строения полимерных комплексов поли-[M(Schiff)]

В стеке отдельные фрагменты связаны между собой либо за счет взаимодействия π -электронного облака ароматической части одной молекулы и металлического центра другой, либо за счет взаимодействия d-орбиталей металлических центров двух молекул

[Ni(SalEn)] методом атомно-силовой микроскопии

АСМ-изображения поверхности стеклоуглерода а) чистого и б) с адсорбированным мономером [Ni(SalEn)], $C = 5 \times 10^{-3}$ моль/л (режим фазового контраста). Размер «островков» 10-500 нм, высота 2 нм.

Изучение морфологии адсорбционного слоя комплекса [Ni(CH₃O-SalEn)] методом атомно-силовой микроскопии

АСМ-изображения поверхности стеклоуглерода а) чистого и б) с адсорбированным мономером [Ni(CH₃O-SalEn)], C = 5×10^{-3} моль/л (режим латеральных сил). Размер глобул 150-250 нм, высота ~30 нм.

Исследование морфологии пленок поли-[Ni(SalEn)]

Электронная микрофотография углеродного материала, модифицированного полимерным комплексом поли-[Ni(SalEn)], $C = 1 \times 10^{-4}$ моль/л; увеличение в 10 000 раз

Электронная микрофотография углеродного материала, модифицированного полимерным комплексом поли-[Ni(SalEn)], $C = 1 \times 10^{-3}$ моль/л; увеличение в 10 000 раз

Исследование морфологии пленок поли-[Ni(CH₃O-SalEn)]

Электронная микрофотография углеродного материала, модифицированного полимерным комплексом поли-[Ni(CH₃O-SalEn)], C = 1×10^{-4} моль/л; увеличение в 10 000 раз

Электронная микрофотография углеродного материала, модифицированного полимерным комплексом поли-[Ni(CH₃O-SalEn)], C = 1×10^{-3} моль/л; увеличение в 10 000 раз

Изотерма адсорбции комплекса [Cu(SalEn)]

$\Gamma \times 10^6$, MOJE/M²

Изотерма адсорбции комплекса [Cu(SalEn)], полученная на чешуйчатом графите при температуре $(25 \pm 3)^{\circ}$ С.

0,002 С, моль/л

Комплекс	Г _{max} × 10 ⁶ , моль/м ²	$\Delta G^0_{\scriptscriptstyle A,G}$, кДж/моль	$\Delta(\Delta G^0_{\scriptscriptstyle A,G})$, кДж/моль	f^{ads}
[Cu(SalEn)]	6,0	-25,6	-15,6	74

Зависимость изменения емкости ДЭС в растворах комплекса [Cu(SalEn)] по сравнению с раствором фонового электролита от концентрации комплекса в растворе.

[Cu(SalEn)] методом атомно-силовой микроскопии

АСМ-изображения поверхности стеклоуглерода а) чистого и б) с адсорбированным мономером [Cu(SalEn)], С = 2×10⁻³ моль/л (режим латеральных сил). Размер глобул 80-100 нм, которые состоят из 5-7 шт более мелких образований диаметром ~30 нм.

Исследование морфологии пленок поли-[Cu(SalEn)]

Электронная микрофотография углеродного материала, модифицированного полимерным комплексом поли-[Cu(SalEn)], C = 1×10⁻⁴ моль/л; увеличение в 10 000 раз.

Электронная микрофотография углеродного материала, модифицированного полимерным комплексом поли-[Cu(SalEn)], C = 1×10^{-3} моль/л; увеличение в 10 000 раз.

Изотерма адсорбции комплекса [Fe(SalEn)Cl]

$\Gamma \times 10^6$, моль/м²

Изотерма адсорбции комплекса [Fe(SalEn)Cl] на чешуйчатом графите при температуре $(25 \pm 3)^{\circ}$ C.

Комплекс	Г _{max} × 10 ⁶ , моль/м ²	$\Delta G^0_{\scriptscriptstyle A,G}$, кДж/моль	$\Delta(\Delta G^0_{\scriptscriptstyle A,G})$, кДж/моль	f^{ads}
[Fe(SalEn)Cl]	2,5	-24,0	-13,4	65

Изменение емкости ДЭС в растворах комплексов железа (II) и железа (III)

Зависимость изменения емкости ДЭС в растворах комплексов [Fe(SalEn)] [Fe(SalEn)Cl] по сравнению с раствором фонового электролита от концентрации комплексов в растворе.

Вольтамперограмма комплекса [Fe(SalEn)Cl]

Циклические вольтамперограммы комплекса [Fe(Salen)Cl] ($C_{\kappa} = 1 \cdot 10^{-3}$ моль/л) в 0,1 моль/л растворе (Et₄N)BF₄ в ацетонитриле на стеклоуглеродном электроде. Скорость сканирования потенциала V_s = 50 мB/с. Цифрами обозначены номера циклов.

Вольтамперограммы стеклоуглеродного электрода в растворе фонового электролита 0,1 моль/л (Et₄N)BF₄/AH, содержащего добавку (Et₄N)Cl в количестве 8×10^{-3} моль/л. V_s = 50 мB/с. Цифрами обозначены номера циклов.

Вольтамперограммы комплекса [Ni(SalEn)]

Вольтамперограммы, зафиксированные на поверхности стеклоуглеродного электрода (0,07 см²) в растворе 1×10^{-3} моль/л комплекса [Ni(SalEn)] (0,1 моль/л (Et₄N)BF₄/AH, V_s = 0,05 B/c, в диапазоне сканирования потенциала 0 – 1,3 B).

Вольтамперограммы комплекса [Ni(SalEn)] (С = 1×10^{-3} моль/л) в растворе 0,1 моль/л (Et₄N)BF₄/AH, содержащем 8×10^{-3} моль/л (Et₄N)Cl, зафиксированная на стеклоуглеродном электроде. V_s = 50 мB/c. Цифрами обозначены номера циклов.

Итоги работы и выводы

1. Получены количественные данные, характеризующие адсорбцию комплексов [Ni(SalEn)], [Ni(CH₃O-SalEn)], [Cu(SalEn)] и [Fe(SalEn)Cl] на поверхности чешуйчатого графита. Рассчитаны энергия Гиббса адсорбции исследованных комплексов, коэффициенты активности мономеров в поверхностном слое. Полученные значения указывают на слабую хемосорбционную связь молекул мономера с поверхностью графита. Для комплекса [Ni(CH₃O-SalEn)] характерна полислойная адсорбция.

2. Методом спектроскопии фарадеевского импеданса измерена емкость двойного электрического слоя (ДЭС) стеклоуглеродного электрода в растворах комплексов [Ni(SalEn)], [Ni(CH₃O-SalEn)], [Cu(SalEn)], [Fe(SalEn)] и [Fe(SalEn)Cl] разной концентрации. Показано, что увеличение концентрации комплексов в растворе приводит к возрастанию емкости ДЭС, исключение составляет комплекс [Cu(SalEn)]. 3. С использованием метода атомно-силовой микроскопии была изучена морфология адсорбционных слоев комплексов [Ni(SalEn)], [Ni(CH₃O-SalEn)], [Cu(SalEn)]. Была показана хемосорбционная природа процесса адсорбции и подтвержден полислойный характер адсорбции этих соединений. Показано, что введение в состав молекулы электрондонорной группы (CH₃O-группы) приводит к существенным изменениям в структуре поверхностного слоя.

Итоги работы и выводы

4. Предложена модель строения поверхностного слоя, образующегося при адсорбции мономерных комплексов [Ni(SalEn)], [Ni(CH₃O-SalEn)], [Cu(SalEn)] и [Fe(SalEn), которая хорошо описывает полученные экспериментальные данные. Процесс адсорбции комплексов сопровождается частичным переносом заряда с молекул мономера на электрод. На поверхности графита может иметь место образование стековых структур.

5. Методом хроновольтамперометрии установлена лабильность атома хлора в молекуле комплекса [Fe(Salen)Cl] и его влияние на характер полимеризации данного комплекса.

6. Показано, что адсорбция комплекса [Fe(Salen)Cl] отлична от аналогичных комплексов никеля, меди и железа (II). На поверхности графита происходит образование мономолекулярного слоя, состоящего из плоско ориентированных молекул мономера. Наряду с этим, часть поверхности занята адсорбированными ионами хлора, которые присутствуют в растворе благодаря непрочной связи с молекулой комплекса.

7. С помощью метода сканирующей электронной микроскопии изучена морфология полимерных пленок, образованных на основе комплексов [Ni(SalEn)], [Ni(CH₃O-SalEn)], [Cu(SalEn)]. Показано, что имеется связь между структурой адсорбционных слоев и свойствами образующихся полимеров.

Спасибо за внимание