
КАТАЛИЗ С ПРИМЕНЕНИЕМ МЕТАЛЛОКОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Выделяют следующие особенности комплексов переходных металлов, определяющих их каталитическую активность:

способность образовывать комплексы с молекулами различных типов, которые, входя в координационную сферу металла – комплексообразователя, активируются, что обеспечивает легкость их дальнейшего взаимодействия.

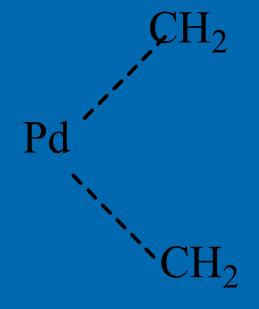
Выделяют следующие особенности комплексов переходных металлов, определяющих их каталитическую активность:

□ образование комплексов с координирующим ионом или атомом металла понижает энергию связи реагирующих молекул субстратов, что уменьшает энергии активации их последующих реакций по сравнению с некоординированными молекулами.

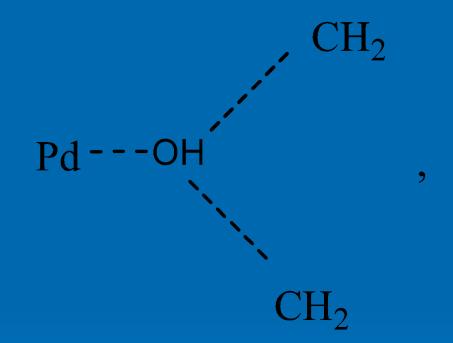
комплексов переходных металлов, определяющих их каталитическую активность:

- □ в координационной сфере металла молекулы изменяют свои кислотные или основные свойства, и возникает возможность кислотно-основного взаимодействия при тех значениях рН, при которых свободная молекула не реагирует.
- если имеется запрет по симметрии молекулярных орбиталей, препятствующий взаимодействию молекул, то при реакции в координационной сфере металла он может сниматься или значительно ослабляться.
- металлокомплексный катализ позволяет осуществить реакции многоэлектронного окисления и восстановления, в которых молекула субстрата в координационной сфере сразу принимает или отдает

LICCYCEL VO SECUTOCUOS


Основные типы реакций, катализируемых комплексами металлов

- Пидрирование: металлокомплексы на основе платиновых металлов, иридиевые и комплексы, $Al(C_2H_5)_3$, катализаторы Циглера Натты, также гидриды металлоценов
- Синтезы с участием оксида углерода:
 октакарбонил Со, фосфиновые и фосфитные комплексы Rh, Ni(CO)₄
- □ Полимеризация, димеризация, олигомеризация олефинов и ацетиленов:катализаторы Циглера Натты и др.
- Окисление углеводородов в карбонильные соединения и эпоксиды: комплексы Pd, гексакарбонил молибдена Мо(СО)₆ или ацетилацетонат ванадила VO(С₃H₇O₂)₂.


Последовательность осуществления металлокоплексного катализа

- $C_2H_4+O_2=CH_3CHO$ (уксусный ангидрид—ацетальдегид)
- катализатором является комплексное coeдинение PdCl₂. При этом протекают следующие стадии:
- 1) $PdCl_2(C_2H_4)(OH^-) PdCl_2(C_2H_4OH) (B_1)$
- PdCl₂(C₂H₄OH)⁻ PdCl₂+ CH₃CHO+H⁺ (\mathbb{F}_2)
- □ Б₁, Б₂ окисленная и восстановленная форма палладия соответственно.

ассоциативный комплекс

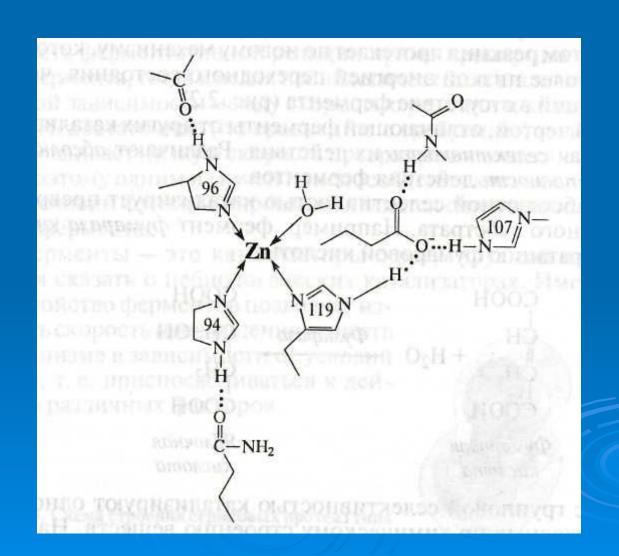
Каталитическая активность

$$\Delta \lg \Phi = -\alpha \Delta \lg$$

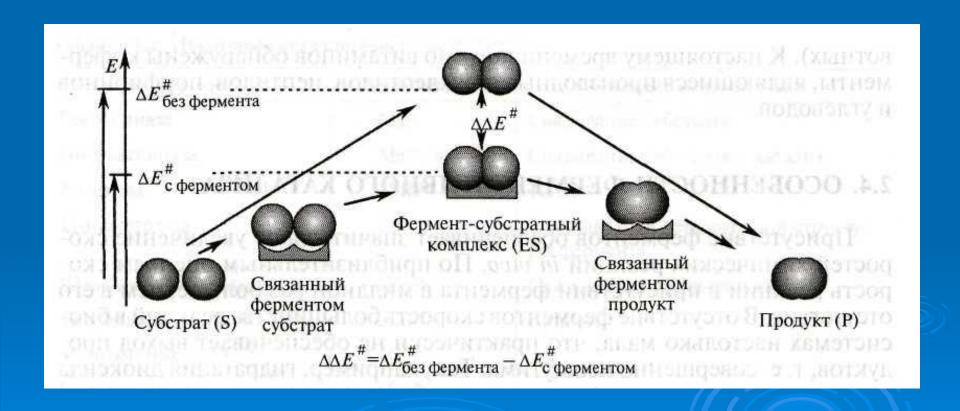
где a — каталитическая активность; Φ — отражает величину свободной энергии металл-лигандного комплекса — снижение закомплексованности (например для PdX^{2}_{4} , в ряду $X^{-}=Br^{-}$, Cl^{-} , F^{-} повышается активность с понижением закомплексованности атомов палладия).

$$\alpha = \frac{\lg a_{Cl^{-}} - \lg a_{Br^{-}}}{\lg \Phi_{Cl^{-}} - \lg \Phi_{Br^{-}}} = \frac{-5 - (-6, 2)}{12,24 - 15,74} = -0,34 \pm 0,06$$

КАТАЛИЗ В ЖИВОЙ ПРИРОДЕ


Ферменты

- Ферменты (или энзимы) представляют собой высокоспециализированный класс белков, обеспечивающих высокие скорости химических реакций, протекающих в клетках живых организмов.
- □ Слово «фермент» происходит от латинского fermentum закваска; другое установившееся название ферментов энзимы происходит от греческого en zyme в дрожжах (термин предложил Ф. В. Кюне в 1878 г.)


Классификация ферментов

No	Название классов	Типы катализируемых реакций	
класса			
1	Оксидоредуктазы	Окислительно-	
		восстановительные реакции	
2	Трансферазы	Перенос групп	
3	Гидролазы	Гидролиз	
4	Лиазы	Расщепление	
		негидролитическим путем связей	
		С-С, отщепление групп с	
		образованием двойной связи,	
		присоединение по двойной связи	
5	Изомеразы	Реакции изомеризации	
6	Лигазы	Химические взаимодействия	
	(синтеазы)	молекул с использованием энергии	
		АТФ (или // других	
		высокоэнергетических соединений)	

Хелатированный цинк (П) в активном центре карбоангидразы

энергии активации реакции за счет ферментативного катализа (индекс # означает переходное состояние)

Примеры использования иммобилизованных ферментов и клеток на их основе в разных отраслях

промышленности

Фермент или клетка	Носитель	Использование
Галактозидаза	Шарики из стекла	Безлактозное молоко
Ксилозоизомераза	Даулит А-7, амберлит IRA904	Смесь глюкозы и фруктозы
Аминоацилаза	Сефадекс	Получение чистых L-
		аминокислот из рацемических смесей
Клетки <i>E. coli</i> , аспартатаминоацилаза	Полиакриламидный гель	Получение L-аспартата
Клетки <i>E. coli</i> ,	То же	Получение 6-
пенициллинамидаза		аминопенициллановой
		кислоты