

ОАО "ОСКОЛЬСКИЙ ЭЛЕКТРОМЕТАЛЛУРГИЧЕСКИЙ КОМБИНАТ"

Формирование оптимального портфеля заказов

в программно-техническом комплексе

«Оптимизация портфеля заказов»

с использованием симплекс-метода

Программно-технический комплекс "Оптимизация портфеля заказов ОЭМК" предназначен для формирования оптимального портфеля заказов.

Выбор оптимального портфеля обеспечивает:

- получение максимальной прибыли при реализации продукции
- оптимальное использование производственных мощностей предприятия.

Технология производства продукции

ЦОиМ – цех окомкования и металлизации: Оборудование:

- Окомкователь ки продувки аргоном
- Обжиговая машина ных вакуума
- 4 шахтные печи металлизации MIDREX

3,3 млн тонн в год окисленных окатышей 2,2 млн тонн в год металлизованных окатышей

Товарная продукция:

Металлизованные окатыши

<u>Для выплавки стали:</u>

Металлизованные окатыши Окисленные окатыши 150х150мм, 170х170мм

З 300х360 мм Мощность: на непрерывного литья заготовок МНЛ В 150х150 мм, 170х170мм

Технология производства продукции

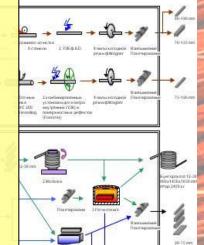
СПЦ-1 – Сортопрокатный цех №1. Стан 700

Оборудование:

- 3 нагревательные печи с шагающими балками
- 1 печь гомогенизации
- крупносортно-заготовочный стан 700
- 3 печи термообработки
- 4 реечных холодильника
- высотный промежуточный склад
- участок абразивной зачистки
- участок обточки заготовки
- установки ультразвукового и магнитного контроля внутренних и поверхностных дефектов

СПЦ-2

Мощность:


2,1 млн тонн в год крупносортного проката

Товарная продукция:

Горячекатанный прокат и прокат с отделкой Круг 75-190 мм, Квадрат 70-135 мм

Для мелкосортного проката

Подкат - квадрат 170 мм

Технология производства продукции

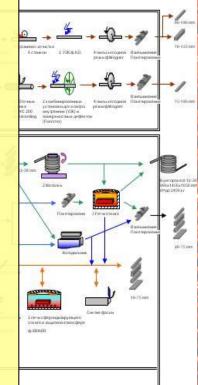
СПЦ-2

СПЦ-2 – Сортопрокатный цех №2. Стан 350

Оборудование:

- Участок контроля и отделки исходной заготовки
- 2 методические печи нагрева
- Мелкосортная линия стана
- Среднесортная линия стана
- 3 печи термообработки
- 2 холодильника
- 2 моталки для смотки проката в мотки
- Крюковой конвейер для охлаждения и транспортировки мотков
- 4 линии правки и контроля
- 3 установки обточки проката
- 1 установка бунт-пруток
- Термическая печь с защитной атмосферой

Мощность:


1 млн тонн в год среднесортного и мелкосортного проката

Товарная продукция:

Горячекатанный прокат и прокат с отделкой (прутки КР, КВ, ПЛ 12-75мм, бунты КР, КВ 12-36мм)

Для обработки в ЦОП

Горячекатанный прокат КР 12-75мм

Мощность:

300 тыс. тонн в год среднесортного и мелкосортного проката с отделкой

Товарная продукция:

Прокат с отделкой прутки КР 12-75мм

Необходимость разработки комплекса

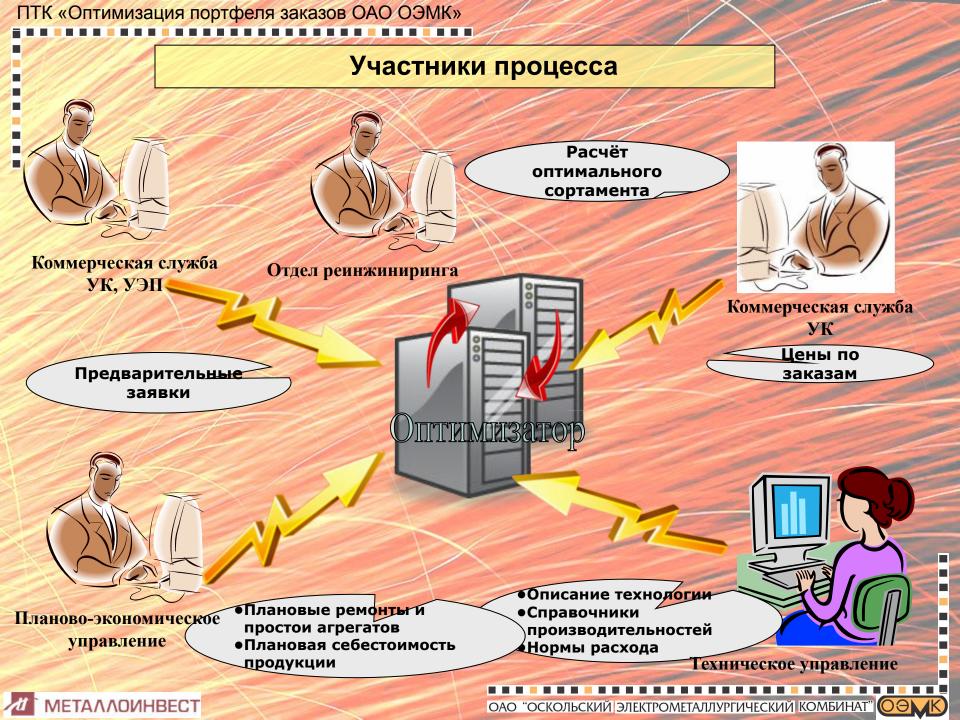
- Большое количество предварительных заявок ~ 1000
- Наличие в сортаменте малых объёмов заявок (от 5 тонн)
- Наличие долговременных обязательных заказов, не обязательно выгодных
- Вероятность нескольких версий предварительного портфеля заказов
- Объёмы предварительных заявок превышают мощности комбината
- Разнообразие производимой продукции как по видам продукции, числу технологических переделов, так и по маркам стали (освоено ~ 2000 марок стали)
- Большое количество альтернативных технологических маршрутов обработки (максимально возможно 94 маршрута)
- Различная себестоимость продукции, производимой по разным маршрутам

Необходимость разработки комплекса

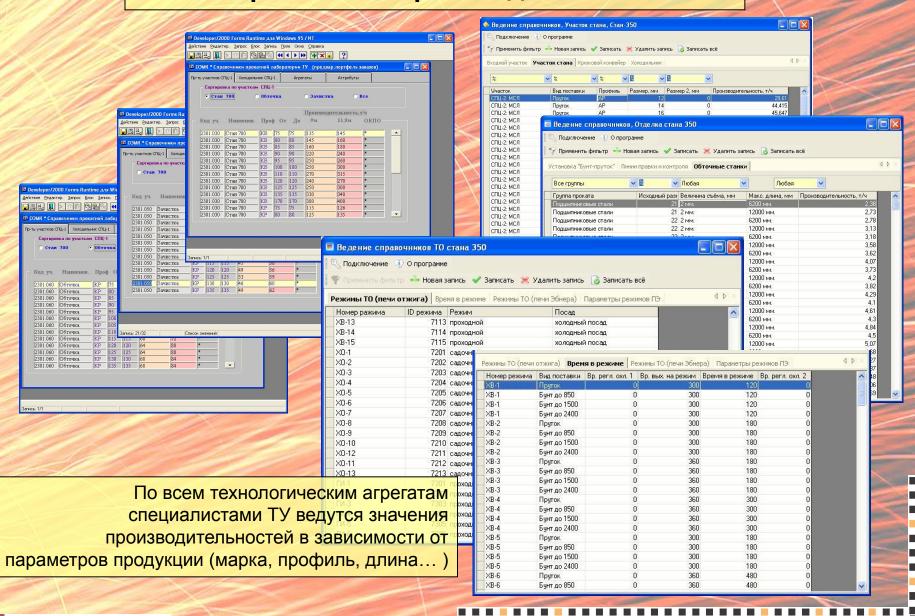
В этих условиях стоит задача:

Оперативно сформировать портфель заказов, реализация которого принесёт предприятию максимальную прибыль в целом по всему портфелю, исключив, может быть, внешне выгодные отдельно взятые заказы.

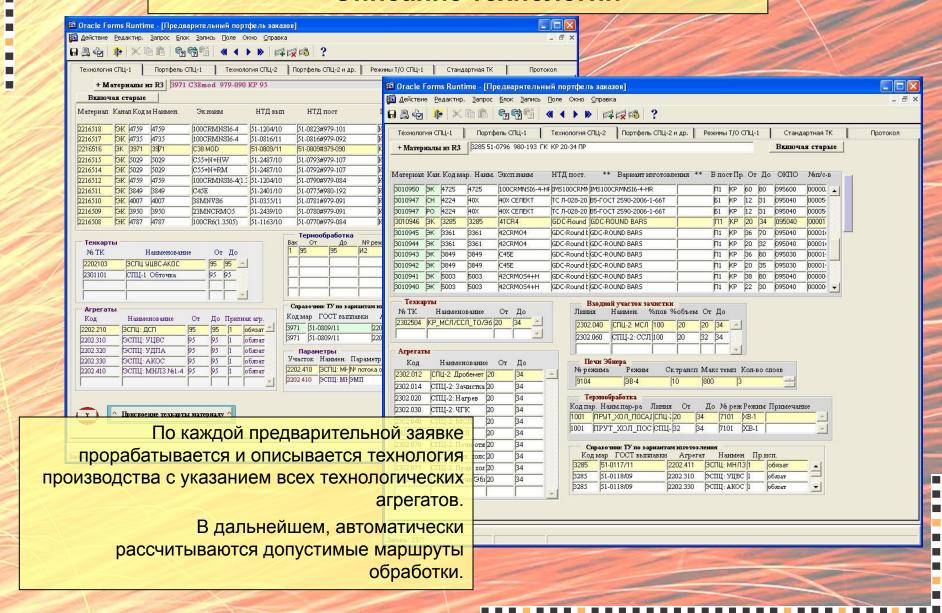
Реализация комплекса

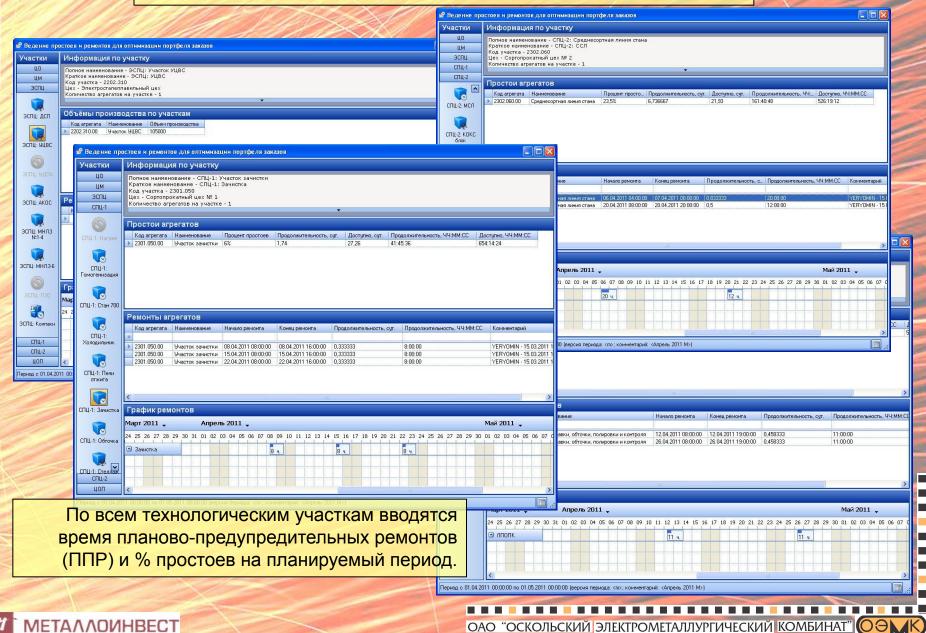

- 2 сервера технологический и коммерческий
- СУБД ORACLE 10 база данных для хранения информации – технологические справочники, описание технологии производства, расчёт загрузки агрегатов, расчёт себестоимости и др...
- DEVELOPER FORMS, Visual Basic приложения для формирования исходных данных, ввода информации по технологии и справочников
- Visual Basic реализация метода оптимизации, отображение и анализ результатов оптимизации

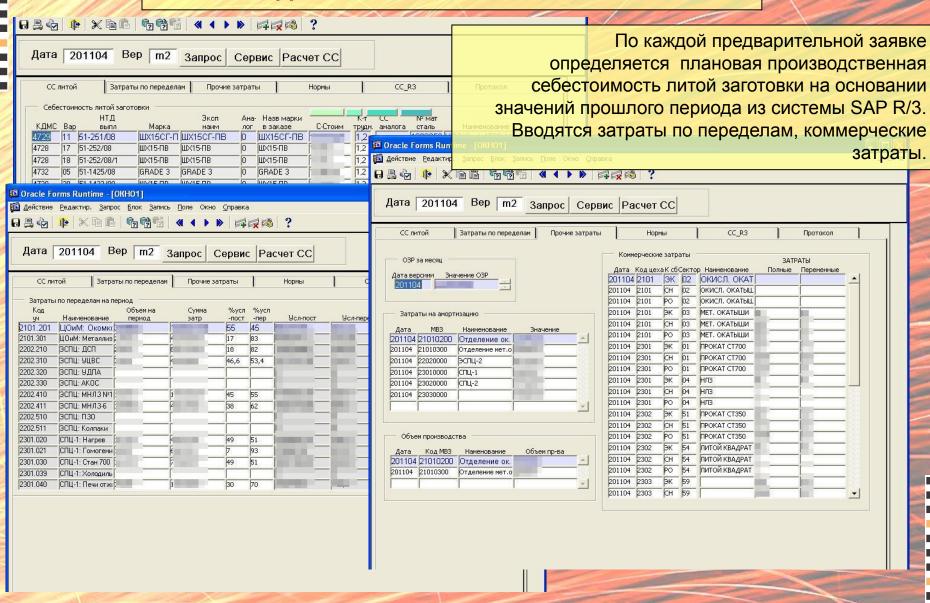
Формирование исходных данных

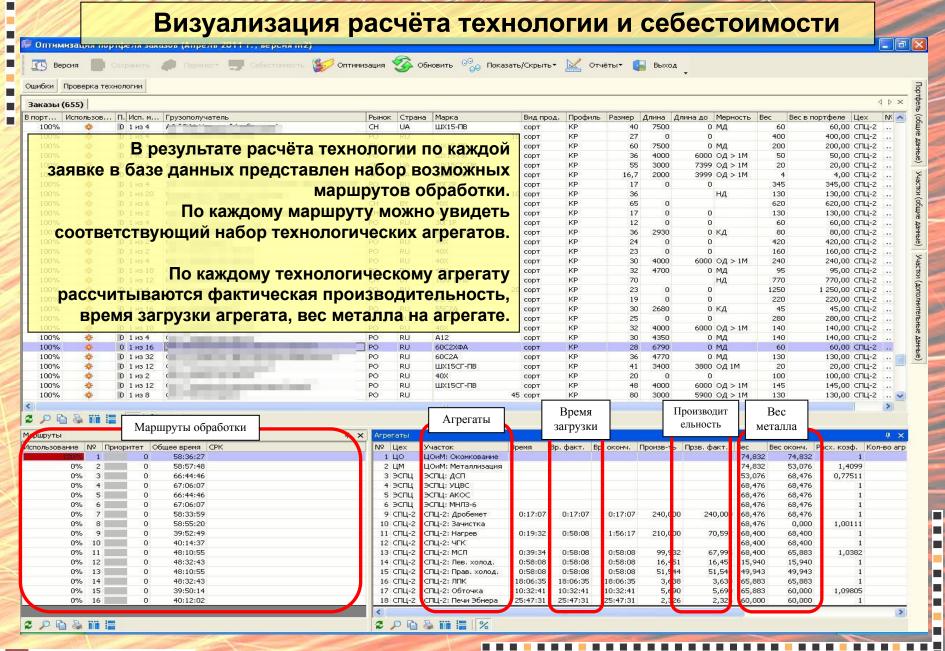

Алгоритм процесса оптимизации портфеля заказов основан на информации, всесторонне описывающей процесс производства продукции комбината

- состояние технологических агрегатов
- технические характеристики агрегатов
- технологические особенности производства конкретных видов продукции
- затраты на производство
- цены реализации продукции


Программно-технический комплекс объединил информацию различных структурных подразделений комбината в единую базу данных.


Справочники производительностей


Описание технологии


Ведение ППР и простоев

Ведение плановой себестоимости

МЕТАЛЛОИНВЕСТ

Ввод цены реализации по продукции

По окончании ввода исходных технологических данных и расчёта технологии по предварительным заявкам вся информация экспортируется в базу данных «коммерческого сервера»

По каждой предварительной заявке соответствующие службы вводят цену реализации продукции

На этом заканчивается подготовка исходных данных для выбора оптимального портфеля заказов.

Оптимизация портфеля заказов

Задачей процесса оптимизации является выбор заказов из набора заявок, портфель которых обеспечивает максимальное значения желаемого критерия:

- максимальная прибыль
- максимальный объём производства
- максимальная прибыль + максимальный объём производства

Необходимо определить наилучшие, с точки зрения выбранного критерия, маршруты обработки

Оптимизация на основе симплекс-метода

В программно-техническом комплексе реализован механизм оптимизации на основе симплекс – метода.

Суть метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но не обязательно оптимальный, а оптимальность достигается последовательным улучшением исходного варианта за определенное число итераций

Оптимизация портфеля заказов с использованием симплекс-метода — поиск абсолютного максимума линейной функции (прибыли) при наличии ряда ограничений (линейных неравенств)

n- количество заказов $i=1,\,2,\,...,\,n-$ номер заказа для каждого i: m_i- количество маршрутов $j_i=1,\,2,\,...,\,m_i-$ номер маршрута i-го заказа

каждому маршруту (для каждого і и <u>ј.)</u> ставится в соответствие некая переменная:

 $\frac{x_{ij} - \partial oля (процент) использования}{3аказа/маршрута}$

 p_{ij} — $npu\overline{6}$ ыль om i-го заказа, произведенного по j-му маршруту

k – количество агрегатов s = 1, 2, ..., k – номер агрегата

для каждого s:

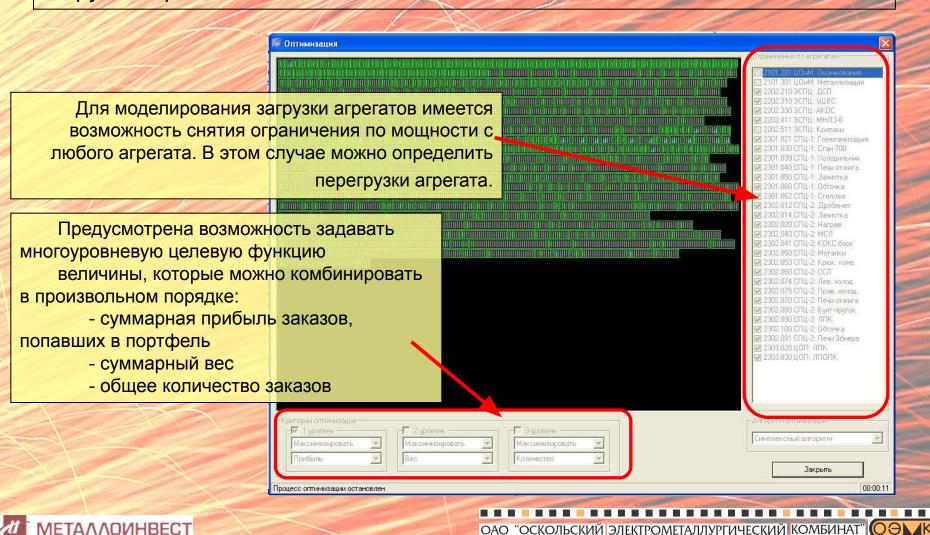
 $F_{_{\mathcal{S}}}$ – фонд времени работы агрегата

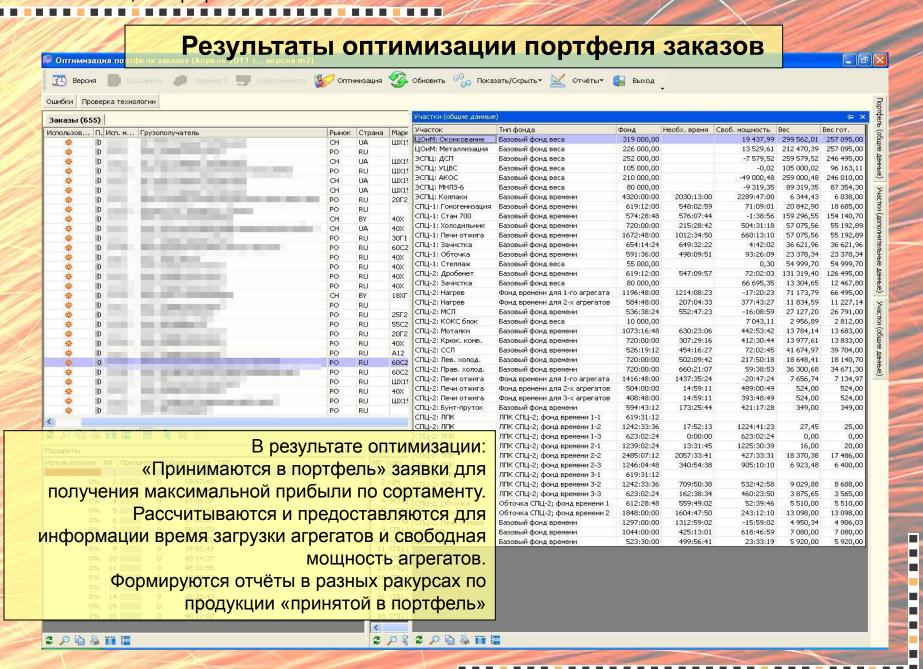
для каждого i, j_i и s: t_{ijs} — время обработки i-го заказа по j-му маршруту на s-м агрегате

<u>составляется целевая функция</u> (суммарная прибыль):

$$\sum_{i=1}^{n} \left(\sum_{j_i=1}^{m_i} x_{ij} \cdot p_{ij} \right) \rightarrow \max$$

<u>для каждого s (агрегата) составляются ограничения по ресурсам агрегатов:</u>


$$F_{s} \geq \sum_{j=1}^{n} \sum_{i=1}^{m_{i}} x_{ij} \cdot t_{ijs}$$
для каждой \overline{z} $\overline{$


$$\sum_{j_i=1}^{m_i} x_{ij} \le 1$$

При помощи симплекс-метода ищутся такие значения x_{ij} , при которых значение целевой функции (суммарной прибыли) будет максимально при заданных ограничениях

Оптимизация на основе симплекс-метода

Процесс оптимизации продолжается до тех пор, пока ни один из оставшихся заказов не сможет быть взят в портфель из-за полной загрузки агрегатов.

