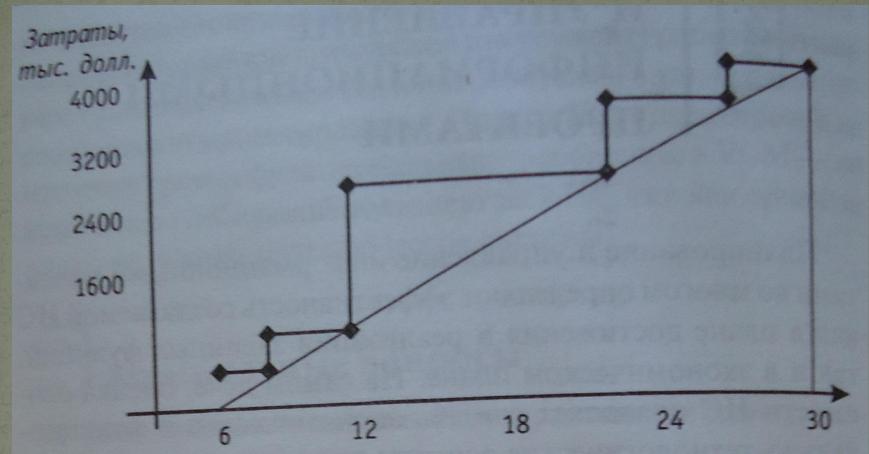
Глава 4.


Планирование и управление информационными проектами

Планирование и управление информационными проектами во многом определяют эффективность создаваемой ИС как в плане достижения и реализации заданных функций, так и в экономическом плане.

4.1. Оценка стоимости информационной системы

- Оценка стоимости информационной системы определяется в целях:
- Принятия решения о целесообразности проекта
- Сравнения вариантов автоматизации в процессе выбора
- Планирование расходов на проект автоматизации
- Контроля фактических расходов на проект автоматизации

Оценка стоимости ИС осуществляется с помощью моделей (рис 4.1)

Число месяцев, прошедших после заключения контракта на разработку

Рис. 4.1. Пример изменения затрат на проект

Для оценки стоимости ИС используются следующие методы:

- Алгоритмические модели (вычисление оценки стоимости в виде функций некоторого числа параметров, представляющих основные стоимостные факторы)
- <u>Экспертные оценки</u>(обсуждение группой экспертов)
- Метод аналогий (стоимость оценивается по аналогии с фактическими затратами на разработку сходных проектов)
- Оценивание методом "сверху-вниз" (полная оценка стоимости проекта выводится по глобальным характеристикам ИС, затем она распределяется между различными компонентами)
- Оценивание методом "снизу-вверх" (сперва оценивается работа по каждому компоненту, а затем результаты суммируются в оценку всей работы)

Достоинства и недостатки оценивания стоимости программных систем(таб.4.1)

Метод	Достоинства	Недостатки
Алгоритмическая модель	Объективность, повторяемость, эффективность, объективность проверки на основе прошлого опыта	Субъективность исходных данных, включение в оценку уникальных факторов, ориентировка на прошлый опыт
Экспертная оценка	Возможность учета представительности группы, взаимодействий уникальных факторов	Зависимость от участников экспертизы, тенденциозность, некоторая несогласованность оценок
Оценивание по аналогии	Основано на прошлом опыте	Отсутствие прошлого опыта
Сверху-вниз	Внимание обращено на общесистемный уровень, эффективность	Менее детальное обоснование, малая устойчивость
Снизу-вверх	Более детальное обоснование, большая устойчивость	Упущение общесистемного уровня, большие затраты

Модели оценки трудоемкости разработки ИС(МОТР ИС).

Кроме условных методов, рассмотренных ранее существуют четыре основные МОТР ИС:

- IFPUG FPA
- MK II FPA
- COCOMO II (Constructive Cost Model)
- МОТР ИС, утвержденные Госкомтруда в 1986 году
- Одной из наиболее известных является конструктивная модель стоимости (СОСОМО), в 1999 году её сменила СОСОМО II. Она устанавливает соответствие между размером системы в тысячах условных строк кода и "классом (естественный, полуинтегрированный, "встроенных систем")" проекта, с одной стороны, и трудоёмкостью разработки с другой.

Главными факторами при выборе модели должны являться:

- Тип модели и доступность репозиториев
- Учет факторов размера системы
- Непрерывная зависимость от сложности проекта
- Учет функциональной сложности
- Учет нефункциональных требований к системе
- Поддержка различных жизненных циклов и разбиения по стадиям жизненного цикла и др.

4.2. Проектное управление

Все методы управления проектами базируются на таких принципах, как:

- Согласование целей проекта со всеми заинтересованными сторонами
- Тщательный подбор команды проекта
- Распределение ответственности между руководителями отдельных направлений
- Планирование основных совещаний и их целей
- Четкий контроль хода выполнения проекта
- Регулярная проверка управляющим проектом выполнения сметы и выдача предупреждений в случае опасности перерасхода средств

- Отклонение нецелесообразных изменений проекта при сохранении необходимой гибкости
- Открытое обсуждение проблем участниками проекта
- Безотлагательное решение проблем сегодня
- Регулярная рассылка достоверной информации об ответственности участников проекта, о результатах совещаний, действиях и изменениях

- Основными процессами управления проектами в соответствии с требованиями международной ассоциации PMI(Project manager institute) являются:
- Инициация проекта(Анализ целесообразности, описание результатов проекта)
- Планирование проекта(Планирование целей, стоимостные оценки, расписание работ, разработка плана проекта)
- Исполнение проекта (исполнение плана проекта, подтверждение целей и качества проекта, выбор поставщиков)
- Управление изменениями(управление качеством, отчетность о выполнении, управление рисками)
- Завершение проекта (административное завершение проекта, закрытие контрактов)

управления

<u>Деятельность как объект управления рассматривается в</u> <u>следующих случаях:</u>

4.2.1. OUDERT HOUERTHULD

- объективно имеет комплексный характер, для ее эффективного управления важен анализ внутренней структуры всего комплекса работ (операций, процедур и т.п.);
- переходы от одной работы к другой определяют основное содержание всей деятельности;
- достижение целей деятельности связано с последовательнопараллельным выполнением всех элементов этой деятельности;
- ограничения по времени, финансовым, материальным и трудовым ресурсам имеют особое значение в процессе выполнения комплекса работ;
- продолжительность и стоимость деятельности явно зависит от организации всего комплекса работ.

Поэтому <u>объектам проектного управления</u> принято считать особым образом организованный комплекс работ, направленный на решение определенной задачи или достижение определенной цели, выполнение которого ограничено во времени, а также связано с потреблением конкретных финансовых, материальных и трудовых ресурсов. При этом под «работой» понимается элементарная, неделимая часть данного комплекса действий

4.2.2. Основы проектного управления

Сетевое планирование и управление— это комплекс графических и расчетных методов, организационных мероприятий, обеспечивающих моделирование, анализ и динамическую перестройку плана выполнения сложных проектов и разработок. Характерной особенностью таких проектов является то, что они состоят из ряда отдельных, элементарных работ.

<u>Сетевое планирование и управление включают три</u> <u>основных этапа:</u>

- Структурное планирование
- Начинается с разбиения проекта на четко определенные операции, для которых определяется продолжительность. Затем строится сетевой график, который представляет взаимосвязи работ проекта.
- Календарное планирование
- Построение календарного графика, определяющего моменты начала и окончания каждой работы и другие временные характеристики сетевого графика.
- Оперативное управление
- Применяются сетевой и календарный графики для составления отчетов о ходе выполнения работ

Основные понятия и определения:

- Работа это некоторый процесс, приводящий к достижению определенного результата, требующий затрат каких-либо ресурсов и имеющий протяженность во времени. По физической ее природе, работу можно рассматривать:
- как действие разработка чертежа, изготовление детали, заливка фундамента бетоном, изучение конъюнктуры рынка;
- процесс старение отливок, выдерживание вина, травление плат;
- ожидание ожидание поставки комплектующих, пролеживание детали в очереди к станку.

По количеству затрачиваемого времени работа может быть:

- действительной, т.е. требующей затрат времени;
- фиктивной, т.е. формально не требующей затрат времени и представляющей связь между какими-либо работами

Событие—это момент времени, когда завершаются одни работы и начинаются другие. Например, фундамент залит бетоном, старение отливок завершено, комплектующие поставлены, отчеты сданы и т.д. Событие представляет собой результат проведенных работ и в отличие от работ не имеет протяженности во времени.

4.2.3. Методика оптимизации загрузки сетевых моделей

- При оптимизации использования ресурса рабочей силы чаще всего сетевые работы стремятся организовать при следующих действиях:
- количество одновременно занятых исполнителей должно быть минимальным;
- потребность в людских ресурсах на протяжении срока выполнения проекта должна быть распределена равномерно.
- Суть оптимизации загрузки сетевых моделей по критерию «минимум исполнителей» заключается в следующем: необходимо таким образом организовать выполнение сетевых работ, чтобы количество одновременно работающих исполнителей было минимальным. Для проведения подобных видов оптимизации необходимо построить и проана лизировать график привязки и график загрузки.

<u>График привязки</u> отображает взаимосвязь выполняемых работ во времени и строится на основе данных либо о продолжительности работ, либо о ранних сроках начала и окончания работ

На <u>графике загрузки</u> по горизонтальной оси откладывается время, а по вертикальной количество человек, занятых работой в данное время

Для построения графика загрузки необходимо:

- на графике привязки над каждой работой написать ко личество ее исполнителей;
- подсчитать количество работающих в каждый день ис полнителей и отложить на графике загрузки.

4.2.4. Методика оптимизации сетевых моделей по критерию "времязатраты"

Целью оптимизации по критерию «время — затраты» является сокращение времени выполнения проекта в целом.
Эта оптимизация имеет смысл только в том случае, когда время выполнения работ может быть уменьшено за счет использования дополнительных ресурсов, что приводит к повышению затрат на выполнение работ

Важными параметрами работы (i, j) при проведении данного вида оптимизации являются:

коэффициент нарастания затрат:

$$k(i,j) = \frac{C_n(i,j) - C_{H}(i,j)}{T_{H}(i,j) - T_{Y}(i,j)}$$

который показывает затраты денежных средств, необходимые для сокращения длительности работы (i, j) на один день;

 запас времени для сокращения длительности работы в текущий момент времени

$$Z_m(i,j) = t_m(i,j) - T_y(i,j)$$

Этапы оптимизации сетевых моделей по критерию "времязатраты":

- 1. Исходя из нормальных длительностей работ определяются критические и подкритические пути сетевой модели и их длительности
- 2. Определяется сумма прямых затрат на выполнение всего проекта при нормальной продолжительности работ
- 3. Рассматривается возможность сокращения продолжительности проекта
- 3.1. Для сокращения выбирается критическая работа с минимальным коэффициентом нарастания затрат имеющая нулевой запас времени сокращения
- 3.2. Время на которое необходимо сжать длину работ определяется как разность между длительностью критического путей в сетевой модели.

- 4. В результате сжатия критической работы временные параметры сетевой модели меняются, что может привести к появлению других критических и подкритических путей
- 5. Для измененной сетевой модели определяются новые критические и подкритические пути и их длительность, после чего необходимо продолжить оптимизацию с шага 3.

Причиной окончания оптимизации являются:

- Исчерпание ограниченных денежных средств
- Исчерпан запас времени сокращения

4.3 Планирование и управление проектами средствами MS Project

Планирование проекта должно включать следующие этапы:

- Определение проекта
- Определение рабочего времени проекта
- Ввод задач проекта
- Организация этапов задач и планирование задач
- Установка крайних сроков и ограничений
- Планирование ресурсной базы проекта
- Выбор людей и оборудования для проекта
- Определение рабочих часов ресурсов
- Назначение людей и оборудования задачам
- Определение затрат, на выполнение проекта
- Создание отчетов, отражающих задачи, ресурсы, затраты требуемые для выполнения проекта

Продолжение следует...