

тел.: +38 044 587 78 30, +38 044 5

Структура распределения

3 канала продаж и распределения

Rendamax или Elco:

Нидерландах, Германии, Швейцарии, Бельгии, Австрии, Италии

Дистрибьюторы торговой марки Rendamax (включая каналы распространения MTS Group)

Чехия, Франция, Испания, Ирландия, Дания, Восточная Европа, Турция, Австралия, Новая Зеландия, Китай, Россия

Покупатели, использующие свою торговую марку:

Великобритания (3), Италия(2)

Преимущества котлов Rendamax **Rendam**

- Уникальная технология premix
- Все котлы модулируются (до 1:7)
- Высокий годовой КПД
- Высококачественные материалы
- Работает на пропане и природном газе
- Горит при низком давлении газа
- Легкий по весу
- Занимает мало места на полу (компактны)
- Прост в монтаже/ демонтаже
- Прост в установке и сервисном обслуживании

Технологии Rendamax

Используются 3 разные технологии:

- Атмосферные котлы
- Настенный котлы серии Premix с горелками из металлизированной нити
- Напольные котлы серии Premix с охлаждаемой водой горелкой

www.iwt.net.ua

Атмосферные котлы R2000

Мощность: 58-425 кВт/ 12 тип

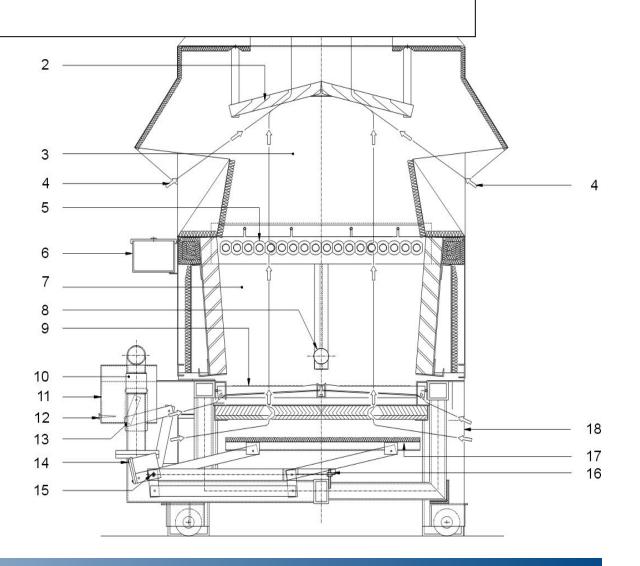
КПД 80/60: 89.1% макс. горение 92.5% мин. горение

Котлы с модуляцией 1:5

Атмосферный котелR18

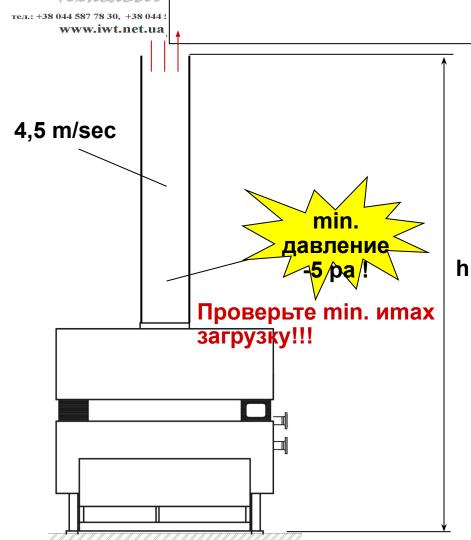
Мощность: 481 – 1002 кВт / 6 тип

КПД 80/60:


89.3% макс. горение 92.9% мин. горение

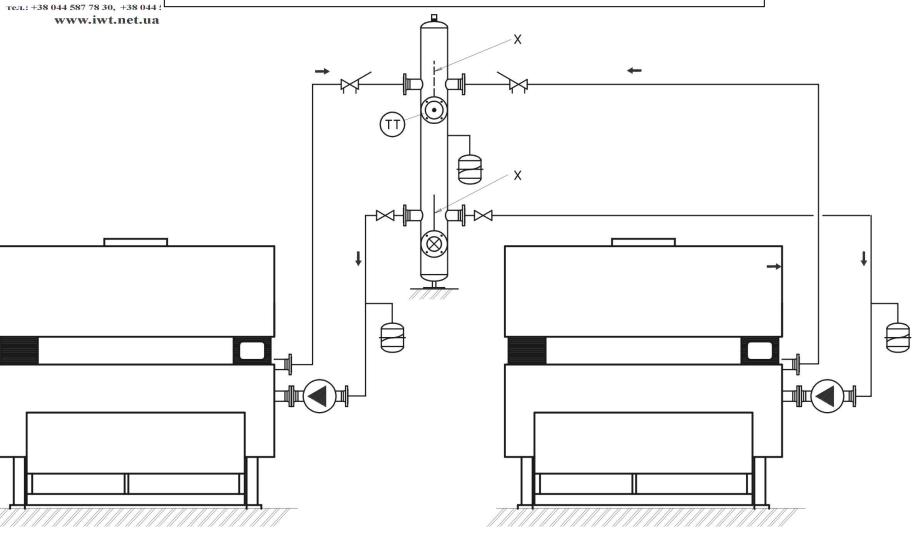
Котлы с модуляцией 1:5

Атмосферный котел


- 1 Дымовая труба
- 2 Дифлектор
- 3 Дивертер тяги
- 4 Воздухозаборник
- 5 Теплообменник
- 6 Лоток соединений
- 7 Камера сгарания (топка)
- 8 Окошко визуального осмотра
- 9 Горелка
- 10 Модулирующий газовый клапан
- 11 Сервомотор
- 12 Передний регулирующий винт воздушной заслонки 13 Система управления
- 14 Регулирующий винт
- 15 Стопорный винт воздушной заслонки
- 16 Задний регулирующий винт воздушной заслонки
- 17 Модулирующая воздушная заслонка
- 18 Воздушный дифлектор

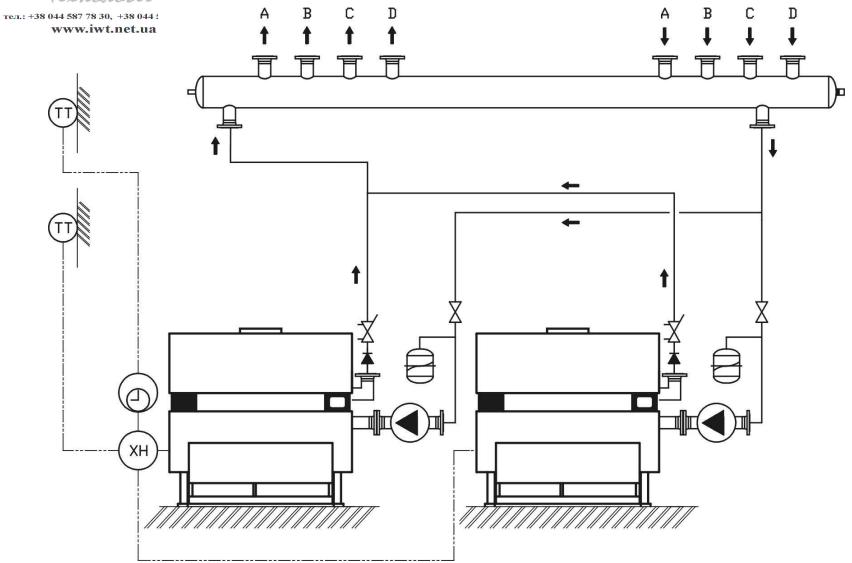
Расчёт дымохода

v [m/sec], d [m], Q [m3/h], h [m]


Скорость:
$$v = Q / A = Q / (0,25\pi * d2 * 3600)$$
Диаметр:
$$d = \sqrt{[Q / (v * 0,25\pi * 3600)]}$$
Сопротивление:
$$p = \xi * \frac{1}{2} * \rho * v2$$
Тяга:
$$-p = \rho * g * h$$

Суммарное = <u>Сопротивление</u> — <u>Тяга</u> → всегда ≤ -5 ра !!!

Гидравлика (2)



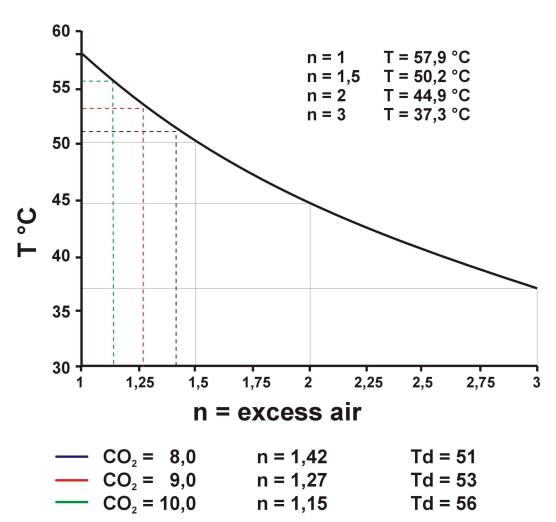
Гидравлика (3)

тел.: +38 044 587 78 30, +38 044 : www.iwt.net.ua

Теория Конденсации

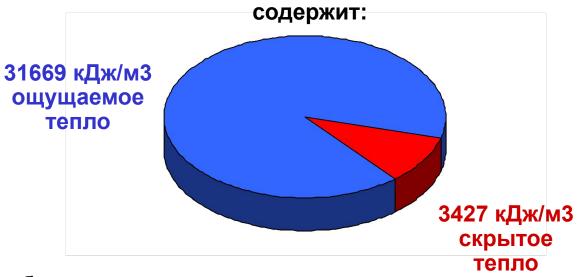
 $CH_4 + 2O_2 = CO_2 + 2H_2O$

Конденсация


В отходящих дымовых газах растворена вода, полученная в результате реакции окисления. Эта вода конденсируется при охлаждении дымовых газов...

Точка конденсатообразования (росы)

тел.: +38 044 587 78 30, +38 044 5 www.iwt.net.ua



КПД

1 m3 природного газа (G25)

Тепловой объем газа рассчитывается как сумма тепла, которое появилось в результате сгорания 1м3 газа при постоянном давлении (101,325 kPa) и при постоянной температуре (25°C = 298,15K).

Чистый тепловой объем газа: сумма тепла , которое может быть получено в результате сгорания 1 м3 газа без конденсации (ощутимое тепло) → Hi = 31669 KJ/m3

Растущий тепловой объем газа: сумма тепла, которое может быть получено в результате сгорания 1м3 газа, включая конденсацию (ощутимое тепло+ скрытое тепло) → Hs = 35096 KJ/m3

www.iwt.net.ua

КПД

$$\eta = \frac{out}{in} * 100\%$$

Чистый КПД

Чистый тепловой КПД основывается на принятии исторического решения, которое говорит о том, что котел имеет 100 % КПД, когда все ощутимое тепло трансформируется, не имея никакого скрытого тепла от конденсации:

$$\eta_{nett} = \frac{heat \ out}{nett \ calorific \ value} *100\% = \frac{heat \ out}{31669} *100\%$$

Максимальный чистый КПД:

$$\eta_{nett} = \frac{*100\% = 111\%}{}$$

Общий КПД

Общий тепловой КПД –это реальный, практический КПД и может быть не более 100% после передачи ощутимого и скрытого тепла :

$$\eta_{gross} = \frac{heat\ out}{gross\ calorific\ value} *100\% = \frac{heat\ out}{35096} *100\%$$

Maximum gross efficiency:

$$\eta_{gross} = \frac{*100\% = 100\%}{}$$

КПД (пример)

Потребление газа = 10 [m3/hr] = 10/3600 [m3/sec]

Чистые затраты энергии = (10/3600) [m3/sec] * 31669 [kJ/m3] = 87,97 [kJ/sec] = 87,97 [kW]

Общие затраты энергии = (10/3600) [m3/sec] * 35096 [kJ/m3] = 97,49 [kJ/sec] = 97,49 [kW]

На выходе = 95,21 kW:

$$\eta_{nett} = \frac{95,21}{87,97} * 100\% = 108,23\%$$

$$\eta_{gross} = \frac{95,21}{97,49} * 100\% = 97,66\%$$

$$\frac{\eta_{nett}}{\eta_{gross}} = 1,11$$

Hастенные котлы Premix

• R30

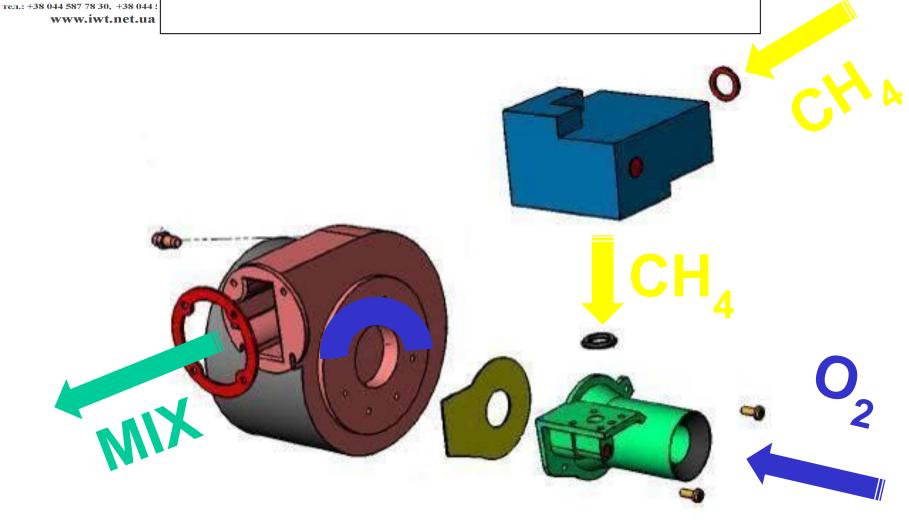
R30


```
R30/45 HR107 39 кВт
R30/65 HR107 59 кВт
R30/85 HR107 78 кВт
R30/100 HR107 88 кВт
R30/120 HR107 110 кВт
# = тах мощность при 40/30
```

- Свободная модуляция 14/20% -100%
- Низкие выбросы No
- Технология Premix

www.iwt.net.ua

Конструкция (1)

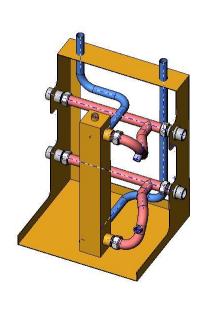


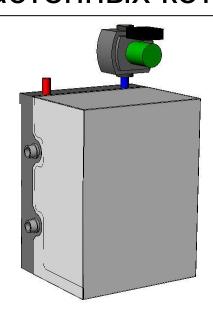
Система смешивания 45-100кВт

www.iwt.net.ua

Каскадная система

Система дымоудаления каскадной системы


Гидравлика каскадной система





Гидравлические дополнения для настенных котлов

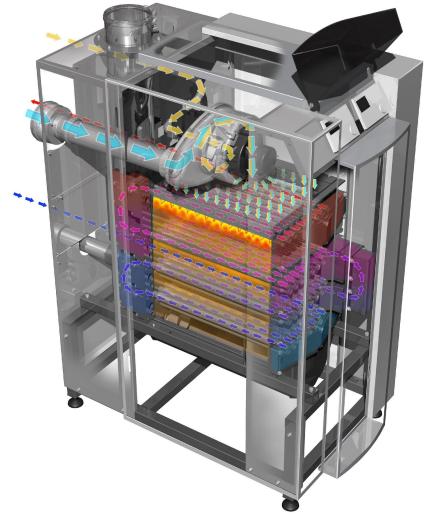
Premix Серия R600

R600

142 - 539 kW

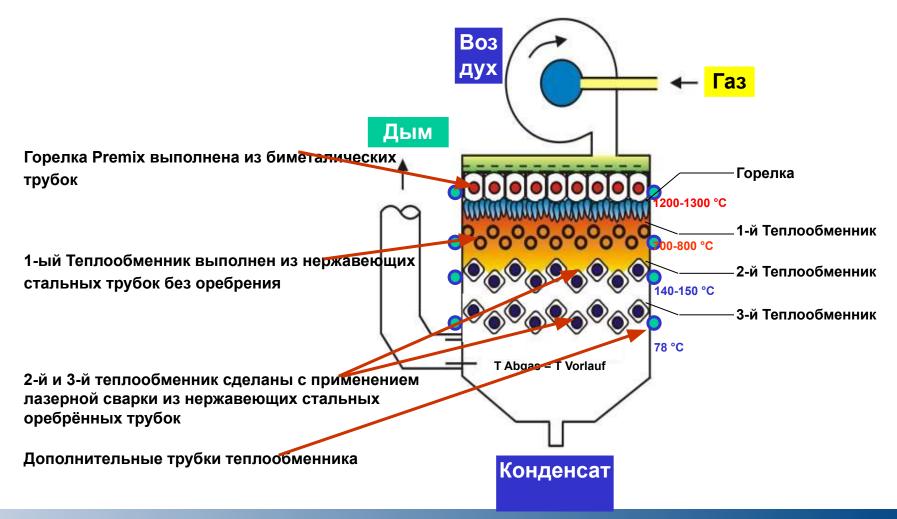
Future available with stainless steel headers for DHW and Swimming Pool systems

- Свободная модуляция от 15% 100%
- Низкие выбросы No_x
- Технология Premix

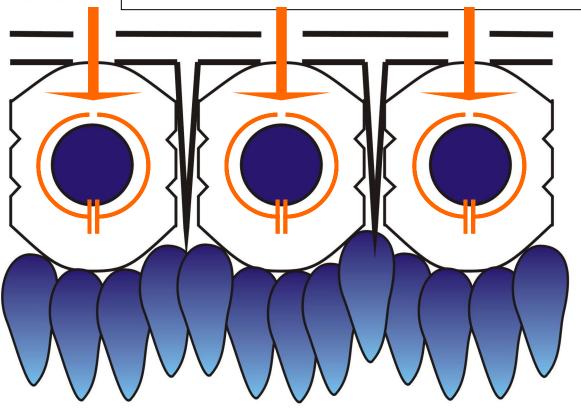


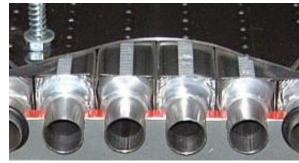
R600

Общая характеристика

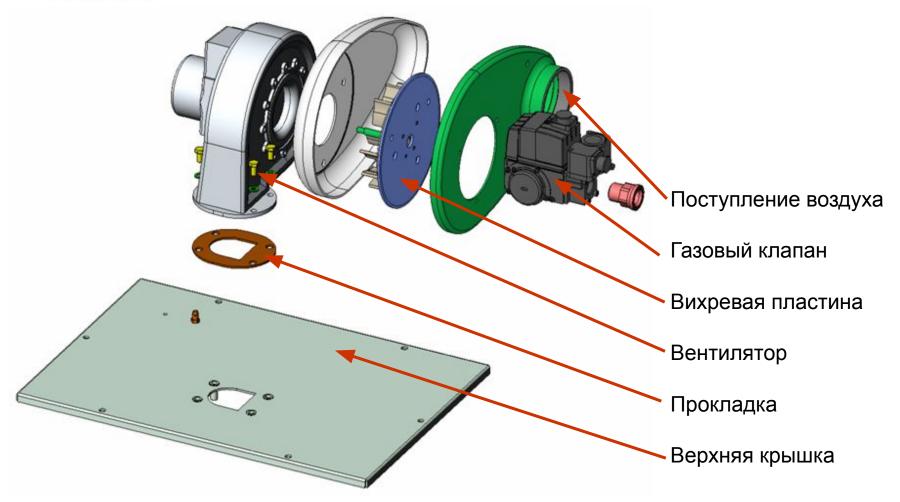

R600 – газовый конденсационный котел с модулируемой горелкой. Автоматика котла управляет модуляцией горелки в зависимости от запроса системы на тепло. Суть процесса состоит в изменении частоты оборотов внутрикотельного вентилятора. Соотношение Газ/Воздух в горючей смеси оптимально для наилучшего горения и максимальной мощности. Дымовые газы направляются вниз через теплообменник и выходят через дымовую трубу. Вентилятор нагнетает необходимое давление для преодоление сопротивления дымовой трубы.

Принцип работы (1)





Принцип работы горелки Premix



Смешивающая система в сборе • Rendamax

тел.: +38 044 587 78 30, +38 044 ! www.iwt.net.ua

www.iwt.net.ua

Вихревая пластина

2. Signalverstärkung Integrated venturi

2. Signal amplifier

Leiteinsatz

- + Patentiert
- + 2-stufige Signalverstärkung
- bricht Strömungsmuster auf und reduziert Resonanzen

Swirl Plate

- + Patented
- Two stage cascaded signal amplification
- + Breaks up uniform flow pattern and reduces resonances

Geräuschdämpfer Silencer pocket

Leitschaufel

1. Signalverstärkung Spiral swirl plate

1. Signal amplifier

Преимущества R600

Высокая модуляция (до 1:7)

*

Водоохлаждаемая камера сгарания (без керамической изоляции)

*

2-х ходовая горелка (снижение образования накипи)

*

Легкий доступ, легкий сервис

*

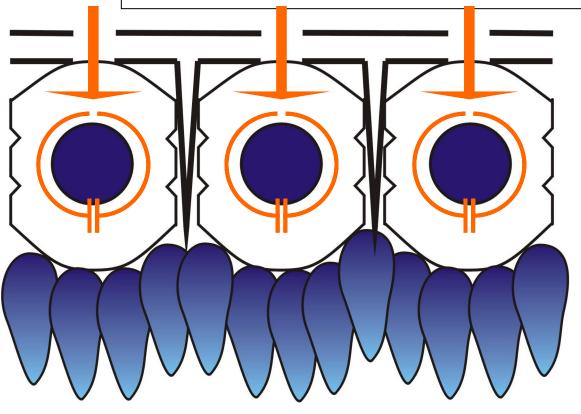
Менее чувствительны к давлению в дымоходе

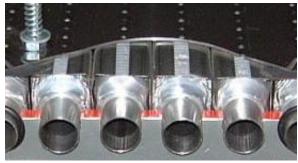
*

Проходит в стандартный проём двери (ширина = 770mm)

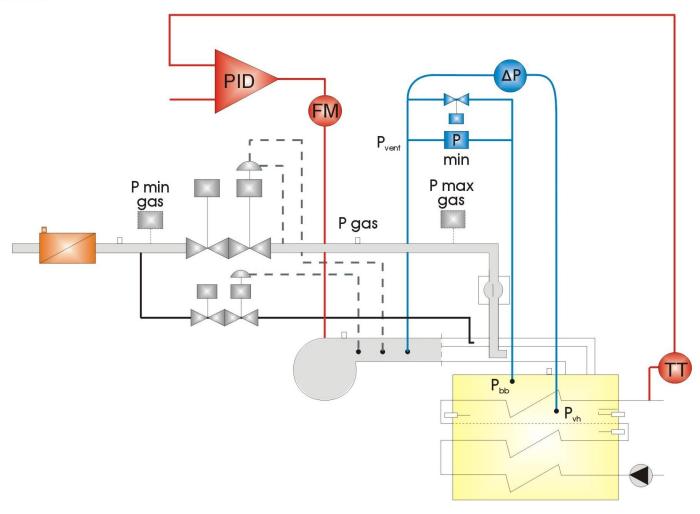
R3400-R3600

Общая характеристика


R3400/3600 — газовый конденсационный котел с модулируемой горелкой. Автоматика котла управляет модуляцией горелки в зависимости от запроса системы на тепло. Суть процесса состоит в изменении частоты оборотов внутрикотельного вентилятора. Соотношение Газ/Воздух в горючей смеси оптимально для наилучшего горения и максимальной мощности. Дымовые газы направляются вниз через теплообменник и выходят через дымовую трубу. Вентилятор нагнетает необходимое давление для преодоление сопротивления дымовой трубы.



Принцип работы горелки Premix



Принцип управления

Характеристики

4 модели (R3407-R3410)

Мощностью от 1.302 до 1.860 кВт

Модуляция 1:4

2-х ходовая горелка

Важные данные

Расширение линейки серии R3400

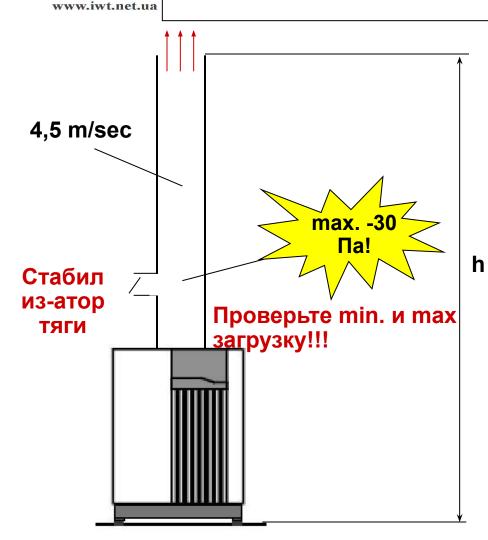
*

2-х ходовая горелка

*

Нет конкурентов с такими же характеристиками!!!

k


Очень компактный:

350 кВт/m²

Расчет дымохода(1)

v [m/sec], d [m], Q [m3/h], h [m]

Скорость:

 $v = Q / A = Q / (0.25\pi * d2 * 3600)$

<u>Диаметр:</u>

 $d = \sqrt{[Q / (v * 0,25\pi * 3600)]}$

Сопротивление:

 $p = \xi * \frac{1}{2} * \rho * v2$

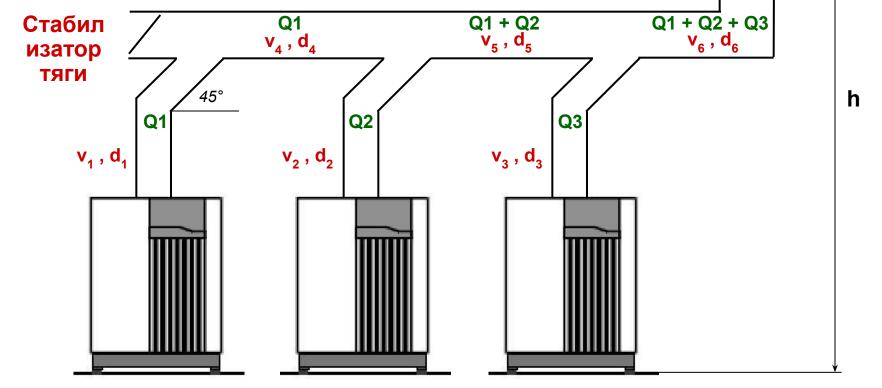
<u>Тяга:</u>

 $-p = \rho * g * h$

Суммирующее =

<u>Сопротивление</u>– <u>Тяга</u>→ всегда ≤ max. perm.

Сопротивление (в документации)


Расчет дымовой трубы(2)

Rendama:

Котлы одного типа:

$$v_1 = v_2 = v_3$$

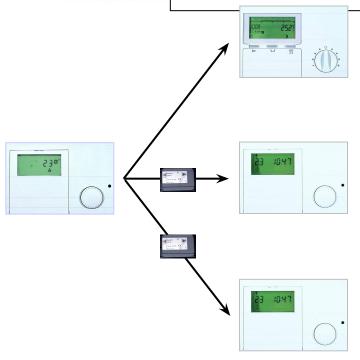
$$Q_1 = Q_2 = Q_3$$

Система должна заполнятся водой с pH от 8 до 9,5. Максимальное содержание хлора 50 мг/л. Исключить проникновение кислорода в систему.

В системах с большими объёмами воды: максимальный объём воды и воды подпитки с правильной жесткостью должны соответствовать нормам VDI2035.

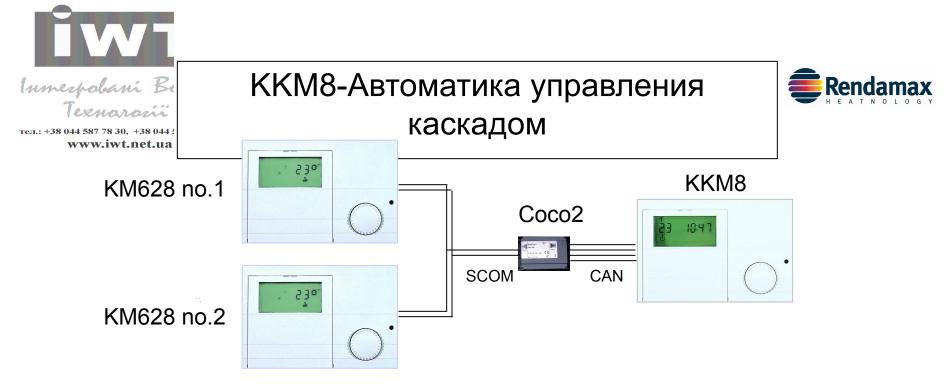
Качество воды (2)

Нижеприведенная таблица показывает соотношение качества воды и общего объёма воды в системе отопления.


Kesselleistung [kW]	Max. Summe Erdalkali [mol/m³]	Max. Härte gesamt [dºH]		
50 - 200	2.0	11.2		
200 - 600	1.5	8.4		

Konzentrat Ca(HCO ₃) ₂		Kapazität der Anlage Q (kW)								
		150	200	250	300	400	500	600		
mol/m ³	dºH	Max. (Nach-) Füllmenge Wasser V _{max} [m ³]								
≤0.5	≤2.8	-	-	-	-	-		-		
1.0	5.6	-	-	-	-	-	-	-		
1.5	8.4	3	4	5	6	8	10	12		
2.0	11.2	3	4	5	6	6.3	7.8	9.4		
2.5	14.0	1.9	2.5	3.1	3.8	5.0	6.3	7.5		
≥3.0	≥16.8	1.6	2.1	2.6	3.1	4.2	5.2	6.3		

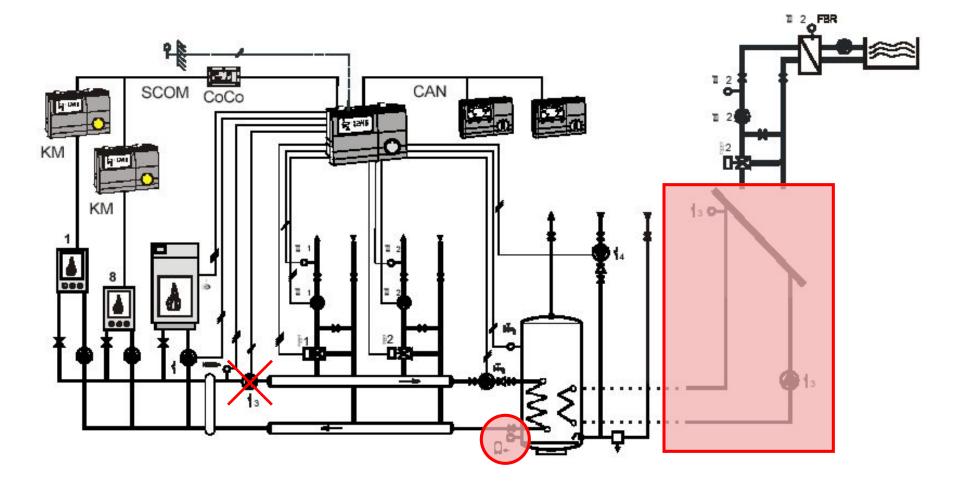
Контроллеры



BM8: погодозависимая автоматика программируемый контур отопления и ГВС 2-х жильный SCOM bus протокол (прямое соединение)

E8: погодозависимая автоматика программируемый контур отопления и ГВС управление 2-мя отопительными зонами управление насосом рециркуляции 4-х жильный CAN bus протокол (соединение через CoCo2)

ККМ8: погодозависимая автоматика программируемый контур отопления и ГВС управление 2-мя отопительными зонами управление насосом рециркуляции управление насосом ГВС управление каскадом от 2-х до 8-ми котлов 4 х жильный CAN bus протокол (соединение через CoCo2)


- Погодозависимая
- Программируется для отопления и ГВС
- Позволяет управлять 2-мя зонами отопления
- Управляет насосом рециркуляции
- 4-х канальная шина bus (с CoCo2)
- Приоритет ГВС
- Каскадное управление от 2-х до 8-ми котлов

www.iwt.net.ua

Схема системы подключения ККМ8

