Анализ влияния динамики космического аппарата на характеристики алгоритмов обработки изображений системы технического зрения проекта "Фобос-Грунт"

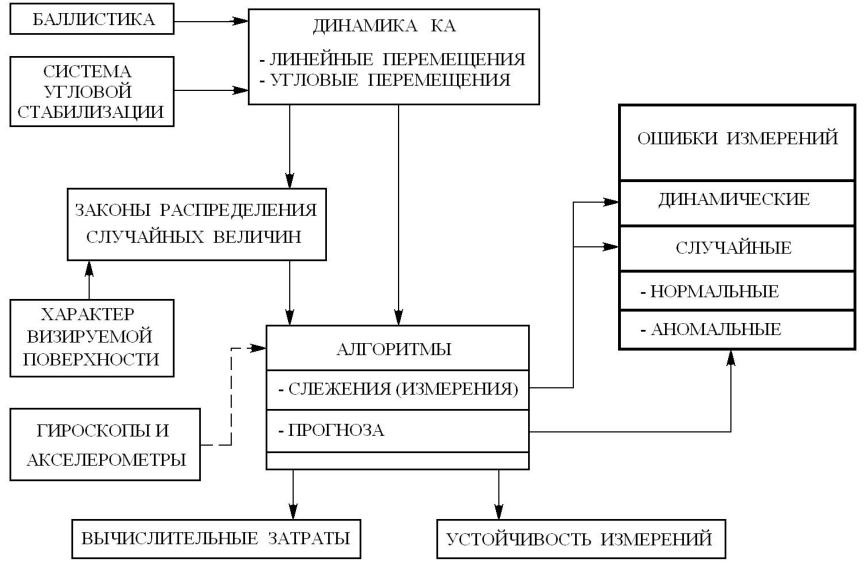
Гришин В. А. Институт космических исследований РАН

### Общее описание проекта

#### Задачи проекта:

- 1. Полет до Марса.
- 2. Детальная съемка поверхности Фобоса.
- 3. Уточнение места посадки.
- 4. Выполнение посадки.
- 5. Взятие проб с поверхности.
- 6. Проведение ряда исследований.
- 7. Старт и возвращение проб на Землю.

# Телевизионная система навигации и наблюдения (TCHH)


#### Состав ТСНН.

- 1. Две узкоугольные телевизионные камеры (f=500 mm)
- 2. Две широкоугольные телевизионные камеры (f=18 mm)

#### Функции ТСНН.

- 1. Проведение съемки Марса и Фобоса.
- 2. Ведение съемки в процессе посадки.
  - Съемка высокого разрешения (1000×1000).
  - Репортажная съемка (250×250).
- 3. Информационная поддержка процесса посадки.
  - Выбор места посадки.
  - Измерение высоты.
  - Измерение относительной скорости.

# Влияние динамики КА на процесс измерений.



# Исходные данные для моделирования

#### Баллистическая информация.

- 1. Вариант схода с КСО с упреждением прохождения траверза точки посадки (ttp-h.txt) ИПМ им. М. В. Келдыша;
- 2. Вариант схода с КСО при прохождении траверза точки посадки (ttp-v.txt) ИПМ им. М. В. Келдыша;
- 3. Сценарий посадки НПО им. С. А. Лавочкина ("быстрый вариант").

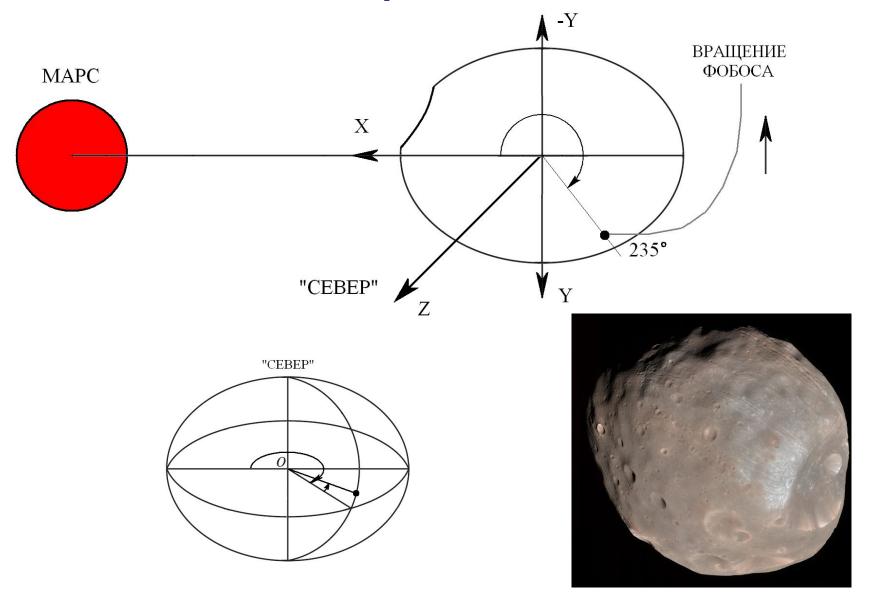
Координаты точки посадки: 5° с.ш., 235° долготы.

#### Модели поверхности Фобоса:

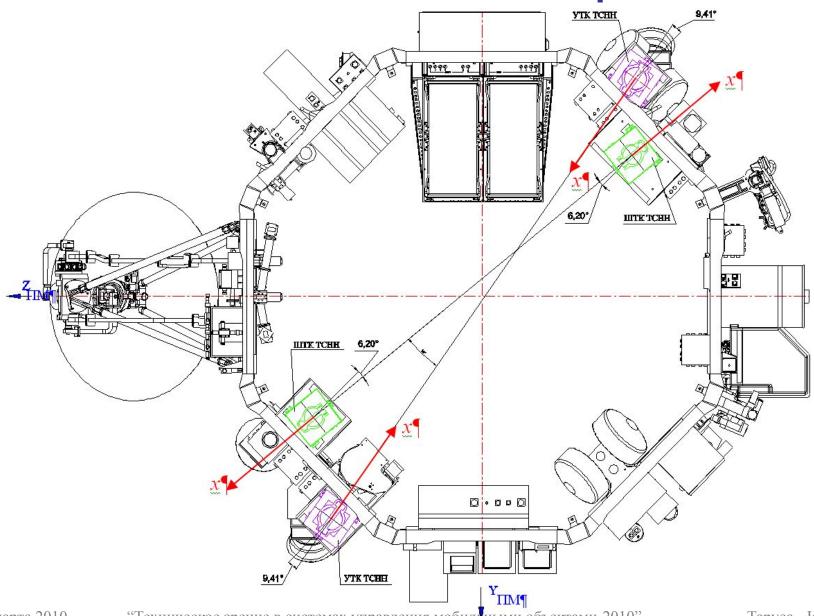
- 1. Трехосный эллипсоид с осями 13.0, 11.4 и 9.2 км.
- 2. Модель ГЕОХИ поверхности Фобоса с шагом 2° на 2°. Для моделирования использовались алгоритмы, заложенные в ТСНН.

# Сценарии ИПМ им. М. В. Келдыша

- 1. Сход с КСО
- 2. Перелет с КСО в точку, расположенную над районом посадки (прицельную точку). h≤10 км. ∆t≈30 мин.
- 3. Вертикальный спуск на большой скорости.
- 4. Прецизионное торможение h≤1000 м.  $V_{\text{верт}}$ ≤1.5-2 м/c,  $V_{\text{бок}}$  ≤1 м/c.


Особенность: В процессе посадки происходит совмещение средней нормали к поверхности с осью X аппарата, что порождает интенсивные угловые колебания КА с большими угловыми скоростями. ⇒ Возмущение канала измерения дальности за счет вариаций наклонной дальности и особенно — возмущение монокулярного канала измерений.

# Сценарий НПО им. С. А. Лавочкина


| импульс схода с КСО прикладывается на высоте                                                                                | 23.2 км    |
|-----------------------------------------------------------------------------------------------------------------------------|------------|
| продолжительность снижения от момента завершения импульса схода с КСО до номинального момента включения тормозного импульса | 32.4 мин   |
| продолжительность тормозного импульса                                                                                       | 71.5 сек   |
| высота на момент начала торможения                                                                                          | 691 м      |
| вертикальная скорость на момент начала торможения                                                                           | 13.8 м/сек |
| боковая скорость на момент начала торможения                                                                                | 2.2 м/сек  |
| высота на момент завершения торможения                                                                                      | 200 м      |
| продолжительность падения КА от момента завершения тормозного импульса до контакта с поверхностью                           | 272 сек    |
| вертикальная скорость на момент контакта с поверхностью                                                                     | 1.44 м/сек |
| боковая скорость на момент контакта с поверхностью                                                                          | 0.34 м/сек |

Особенность: Процесс посадки выполняется в инерциальном пространстве, что исключает интенсивные угловые колебания КА. ⇒ Создаются благоприятные условия для работы СТЗ.

### Системы координат Фобоса



#### Расположение камер на КА



### Стереорежим

Высота и её оценки Coarse и Precise

Диспарантность на изображении 250\*250

Вертикальная скорость и ее оценка на последних 48.6 метрах.

### Стереорежим

Прогнозируемые границы диспарантностей (смещены относительно текущей диспарантности)

Расширенные границы области поиска соответствия.

# Стереорежим. Влияние разброса диспарантности 0.05

Сценарий НПО им. C. А. Лавочкина

Высота и её оценки Coarse и Precise

Вертикальная скорость и ее оценка на последних 48.6 метрах.

Прогнозируемые границы диспарантностей (смещены относительно текущей диспарантности)

)10"

Таруса - ИКИ

# Стереорежим. Влияние разброса диспарантности 0.1

Высота и её оценки Coarse и Precise

Вертикальная скорость и ее оценка на последних 48.6 метрах.

Прогнозируемые границы диспарантностей (смещены относительно текущей диспарантности)

10"

Таруса - ИКИ

#### Стереорежим

Допустим, диспарантность равна 25 пикселям. Н=48.6 м.

Разброс по диспарантности 0.05 дает разброс по дальности 46.3-51.1 м. на площадке размером  $20\times10$  м.

Разброс по диспарантности  $0.1 \Rightarrow$  разброс по дальности 44.2-54 м. на площадке размером  $20 \times 10$  м.

#### Оптимизация параметров алгоритмов:

- 1. Прогноз области поиска соответствия в режиме слежения
- 2. Прогноз области поиска соответствия в режиме сбоя

Учет: Текущие оценки, дисперсию измерений дальности, дискретность измерения диспарантности, флюктуации оценок скорости, коррекцию приращений на малых дальностях

#### Монокулярный режим

Высота и расстояния до поверхности

Изменения координат и расстояния до поверхности за цикл обработки

Изменения углов ориентации и коэффициента масштабирования изображения

### Монокулярный режим

Величина ошибки прогноза вектора перемещения точки в поле зрения и график режимов работы алгоритма

Компоненты векторов перемещения точки поле зрения (на изображении 62\*62).

### Прогноз

$$\overset{\bowtie}{S}_{p\ i+1} = W_0 \overset{\bowtie}{S}_{p\ i} + W_1 \Delta \overset{\bowtie}{X}_i$$
 Простейший рекурсивный фильтр. Ошибка прогноза нарастающим итогом (55 измерений).

| Сценарий ttp-h.txt |     | Сценарий ttp-v.txt.          |     |     |                              |
|--------------------|-----|------------------------------|-----|-----|------------------------------|
| w0                 | w1  | Суммарная ошибка<br>прогноза | w0  | w1  | Суммарная ошибка<br>прогноза |
| 1                  | 0   | 309                          | 1   | 0   | 247                          |
| 0.7                | 0.3 | 280                          | 0.7 | 0.3 | 217                          |
| 0.4                | 0.6 | 274                          | 0.4 | 0.6 | 216                          |
| 0.1                | 0.9 | 282                          | 0.1 | 0.9 | 215                          |
| 0                  | 1   | 287                          | 0   | 1   | 217                          |

По сценарию НПО им. С. А. Лавочкина ошибка прогноза в 203 раза меньше (при 87 измерениях)

Зависимость оптимальных параметров алгоритмов от сценария посадки

#### Выводы

- 1. Динамика КА влияет самым непосредственным образом на ошибки измерений (динамические и случайные нормальные).
- 2. Динамика КА влияет опосредованно на ошибки измерений через профиль визируемой поверхности.
- 3. Динамика КА оказывает определяющее влияние на алгоритмы прогноза, используемые для формирования областей поиска соответствия; от этого зависит интенсивность потока аномальных ошибок.
- 4. Алгоритмы обработки информации должны учитывать динамику КА для повышения точности и устойчивости измерений.
- 5. Особенно это важно в случае, когда нет запасов по вычислительной мощности процессоров, используемых для обработки видеоинформации.