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bESMACCOBBIE ABYMEPHBIE JTIEKTPOHB B HHBEPCHOM KOHTAKTE
b.A.Boaxos, 0.4.Ilanxparos

Tlpeanoxer HoBbI THN N0NYNpPOBORKHKOBALX CTPYKTYP H8 OCHOBE KORTAKTA ABYX MATepHa-
TI0B ¢ B3aHMHO HHBEPTHPOBAHHBIMH 30HamH. KadecTBetHOR 0cOBEHHOCTBIO TAKOrO KOKTAKTA
ABNACTCH HATHYHE B HEM HE3ABHCALLX OT BJIA epeXOMHOR 06IACTH INeKTPOHHAIX COCTORHMN

C JHHEAHIM [IBYMepHBIM crexTpoM. OripedeneHh CBOHCTBE HHBEPCHOMO KOHTAKTE BO BHELL-
HEM MATHHTHOM 1107,



B zmyxaouaom NPUOIIHOKEHHH 3Hepre THYECKHH CNEK TP TAKOrO KOHTAKTA OIMMCHIBAECTCA ypaB-
HeHHeM JIHpaKa ¢ 3aBuCsIIeH OT KOOPAMHATH! Z LIMPHHOM 3aIpelleHHON 30HBI:
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Quantum Spin Hall Insulator State
in HgTe Quantum Wells
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Schematic of the spin-polarized edge channels in a quantum spin Hall
insulator.
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Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of
matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells.
We fabricated such sample structures with low density and high mobility in which we could tune,
through an external gate voltage, the carrier conduction from n-type to p-type, passing through an
insulating regime. For thin quantum wells with well width d < 6.3 nanometers, the insulating regime
showed the conventional behavior of vanishingly small conductance at low temperature. However,
for thicker quantum wells (d > 6.3 nanometers), the nominally insulating regime showed a
plateau of residual conductance dlose to 2¢%/h, where e is the electron charge and h is Planck’s
constant. The residual conductance was independent of the sample width, indicating that it is caused
by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic
field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also
independently determined from the magnetic field=induced insulator-to-metal transition. These
observations provide experimental evidence of the quantum spin Hall effect.

KpaeBble COCTOAHNA HE UMEKOT pacCedHNA Ha3aq



No back-scattering !

* CnNnH 0OHO3HA4YHO CBSI3aH C UMMYJ1IbCOM.

<1|2> =0 ecnu Hem siI8HO CrUH-
3asucswea0 e3aumodelicmeusi



YT10o Takoe TOnoJIorny. M3oiIATop - 2

DJIeKTpPOAMHaMMKa C O-4iIeHOM:

Nlsgrion = ( 2/27T/7C)B E

© =11 (2n+1) pans coxpanenns T-uHBapUaHTHOCTY

2n 4+ 1

Sap = SW / (13;1?(11‘.6‘“/07(‘5)“.4,,(90.47-. exp(iSSD)= ('1 )n

And NHTerparsia no 3aMKHyToMy npocTpaHCTBY

(n3r1oxeHmne 1o Matepuasty M. Franz, Physics 1, 36 (2008)



Uto OyneT npu © # CONST 7

NpocTOoun
N30NATOP

©=0

TOn.
M30NATOP

O=TT

V-E=p—(2/27thc)VO - B

VXB:atE

; :

(e?/271thc) (VO x E + 0;6B)

AHOMAaJIbHBIE WICHBLl CUIAT Ha IpaHuULle
T-maBapuaHTHOCTL TaM HapyIlleHa



MarHnto-anekTpnieckmnm adodoekT

A magnetic lield applied perpendicular to the same inter-
face introduces (n + 1/2) electrons for each flux quantum
of applied field. The shaded region corresponds to the
charge density, p, of the electrons, which mainly concentrates
around the boundary between the two insulators and is largest
where the magnetic field is strongest. (Illustration: Alan
Stonebraker/stonebrakerdesignworks.com)

' Kpome Toro,

(Left) A quan‘tdum Hall effect occurs without strong mag- Scpcpe KT Keppa -

netic field when an electric field applied in the plane of
the interface between a topological (red region) and an or- BpaleHne rnioCKOCTHU

dinary (blue region) insulator (or vacuum) induces a pre-
cisely quantized current perpendicular to the field. (Right) nonﬂpVBaU.MM

oy = (e2/h)(n+1/2)
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Magnetic Insulators”
R. LiR. Li, J. WangR. Li, J. Wang, X. QiR. Li,

« Axions aréI VeYy ﬂ%ﬁ,’ \?&y%h%%%gpartides

postulated more than 30 years ago in the context of the
Standard Model of particliz physics. Their existence
could explain the missing dark matter of the universe.
However, despite intensive searches, they have yet to be
detected. In this work, we show that magnetic
fluctuations of topological insulators couple to the
electromagnetic fields exactly like the axions, and
propose several experiments to detect this dynamical
axion field. In particular, we show that the axion
coupling enables a nonlinear modulation of the
electromagnetic field, leading to attenuated total
reflection. We propose a novel optical modulators device
based on this principle.

Arxiv: 0908.1537
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[.BosmoBux Ilucema XKDOTD 90, 440 (2009).
Topological superfluid *He-B: fermion zero modes on interfaces and

in the vortex core M.A. Silaevin the vortex core M.A. Silaev, G.E.
Volovik arXiv:1005.4672
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A topological Dirac insulator in a quantum spin Hall
phase

D. Hsieh', D. Qian’, L. Wray', Y. Xia', Y. S. Hor’, R. J. Cava" & M. Z. Hasan"”
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Figure 1| Dirac-like dispersion near the L-point in the bulk Brillouin zone.
Selected ARPES intensity maps of Big ¢Sbg , are shown along three

k-space cuts through the L-paint of the bulk 3D Brillouin zone. The
presented data are taken in the third Brillouin zone with L, =2.9A™ " with a
photon energy of 29¢V. The cuts are along the k,-direction (a); a direction
rotated by approximatdy 10° from the ky-direction (b}); and the k.-direction
(c). Here, & symbalizes a change along a particular k-direction. Each cut
shows a A-shapedbulk band whose tip lies below the Fermi levd, signallinga
bulk gap. Thesurfacestates are denoted SS and are allidentifiedin Fig. 2 (for
further identification via theoretical calculations, see Supplementary
Information). d, Momentum distribution curves corresponding to the
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intensity map in a. f, A log-scale plot of the momentum distribution curves
corresponding to the intensity map in ¢. The red lines are guides to the eye
for the bulk features in the momentum distribution curves. e, Schematic of
the bulk 3D Brillouin zone of Bi,_Sb, and the 2D Brillouin zone of the
projected (111} surface. The high-symmetry points I', M and K of the surface
Brillouin zone arelabelled. The schematic evolution of bulk band energies as
afunction of x is shown. The L-band inversion transition occurs at x = 0.04,
where a 3D gapless Dirac point is realized, and the com position we study
here (for which x=10.1) is indicated by the green arrow. A more detailed
phase diagram based on our experiments is shown in Fig. 3c.
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Electrons on the surface of Bi;Se; form a topologically-ordered

two dimensional gas with a non-trivial Berry’s phase

Y. Xia.! L. Wray,! D. Qian.! D. Hsieh,! A. Pal.! H. Lin? A.
Bansil? D. Graner,® Y. S. Hor,® R. J. Cava,® and M. Z. Hasan!:4
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Princeton University, Princeton, NJ 08544, USA
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FIG. 1: Spin-orbit interaction induced surface Fermi surface: (a) A schematic of the bulk 3D BZ
of BigSes and the 2D BZ of the projected (111) surface. (b) LDA band-structure of the 2D surface
states along the K — ' — M k-space cut. Bulk band projections are represented by the shaded
areas. The hand-structure results with spin-orbit coupling (SOC) is presented in blue and that
without SOC is in green. No pure surface band is observed within the insulating gap without SOC
(black lines). One pure gapless surface band crossing Ep is observed when SOC is included (red
lines). (c) The corresponding surface FS is a single ring centered at I'. The band responsible for
this ring is singly degenerate. The time-reversal-invariant momenta (TRIM) on the (111) surface
BZ : the I' and the three M points are marked by red dots.
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FIG. 4: The surface Fermi surface : (a) the surface FS is a small pocket around I'. (b) High
momentum resolution data around T" show a single ring formed by the pure surface state band.
In the middle of the ring is a filled-in disk-shaped spectral intensity reflecting resonant states (see
text). The pure surface Fermi surface of BiSe is different from that of spin-orbit pair Fermi surface
observed on metallic gold Au(111). (¢) The Au(11l) surface FS, which has two rings (each non-
degenerate) surrounding the I' TRIM. An electron circling the gold FS can only carry a Berry’s
phase of 0, characteristic of a trivial topological metal, Z, ==+1. The single surface Fermi surface

observed in BizSe; reflects its non-trivial topological character Z, =-1.



 Large Gap Topological Insulator Bi2Te3
with a Single Dirac Cone on the Surface
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FIG. 1: (Color) Crystal and electronic structures of Bi2T'es
(a) Tetradymite-type crystal structure of Bi;T'e3, formed by
stacking quintuple-layer groups sandwiched by three sheets
of Te and two sheets of Bi. (b) Calculated bulk conduction
band(BCB) and bulk valance band(BVB) dispersions along
high symmetry directions of the surface BZ (see inset), with
the chemical potential rigidly shifted to 45meV above the
BCB bottom at to match the experimental result. (¢) The k.
dependence of the calculated bulk FS projection on the sur-

face BZ. (d) ARPES measurements of band dispersions along
K -TI'—K(top) and M —I'—M (bottom) directions. The broad
bulk band (BCB and BVB) dispersions are similar to those
in panel (b), while the sharp V-shape dispersion is from the
surface state band (SSB). Energy scales of the band structure
are labeled as: Eg: Binding energy of Dirac point (0.34eV),
E,: BCB bottom binding energy(0.045eV), E>:bulk energy
gap(0.165eV) and Ej: energy separation between BVB top
and Dirac point (0.13eV). (e) Measured wide range FS map
covering three BZs shows that the FSs only exist around T’
point, where the red hexagons represent the surface BZ. The
uneven intensity of the FSs at different BZs results from the
matrix element effect. (f) Photon energy dependent F'S maps.
The shape of the inner FS changes dramatically with photon
energies, indicating a strong k. dependence due to its bulk
nature as predicted in panel (c), while the non-varying shape
of the outer hexagram FS confirms its surface state origin.



. Crossover of Three-Dimensional Topological Insulator of Bi;Se; to the
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Two-Dimensional Limit
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Green and blue colours represent the states that mainly localize at surface and
interface, respectively. The inset shows a schematic illustration of the surface states
of BizSe: film above (right) and below (left) 6 QL. The solid and dashed lines

represent the surface states that mainly localize at surface and interface of Bi;Se; film,
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Momentum-Resolved Landau-Level Spectroscopy of Dirac Surface State in BisSes

T. Hanaguri,! K. Igarashi,® M. Kawamura,! H. Takagi,* and T. Sasagawa®

Ph¥s Rev B 82, 081305 (2010)
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ergy E, of n-th LL of Dirac fermions is expressed as
E, = Epp +sgn(n)vy/ 2ehin|B,

Here we demonstrate a way to derive the E-k disper-
sion from the LL spectroscopy. Since the Landau orbit is
quantized in k space, we can pick out specific momentum.

According to the Bohr-Sommerfeld quantization condi-
tion, the area S, of the n-th Landau orbit in k& space
is given bv S, = (n + ~v)2meB/h, where ~ is the phase

2e|n|B
kn =y Ihl _
Thus, once we specifvy n and B, a set of £, and &k, can
be obtained. Since \/|n|B represents k,, E, should be
scaled by /|n|B and the scaling function is nothing but
the E-k dispersion relation.

0+ 1 -3
400 -300 -200 -100 O 100 0.0 02 04 % 0.6 0.8
Sample bias (mV) K, (nm )

FIG. 3: (color online). {a) Tunneling spectra showing the
series of peaks associated with the LL formation. Data were
collected in a magnetic field perpendicular to the surface from
0T upto 11 T with 1 T interval. V; = +100 mV, I; = 0.2 nA

LLs E,, scaled by the square-roots of field B and LL index
n. The scaling parameter /|n|B (top axis) can be converted
into the momentum % (bottom axis) and the scaling function
represents band dispersion. See text for details. The inset
shows the n dependence of E,, before the scaling.
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Nonlocal transport in quantum spin-Hall state in HgTe quantum well
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Hailin PengHailin Peng, Keji LaiHailin Peng, Keji Lai, Desheng
KongHailin Peng, Keji Lai, Desheng Kong, Stefan MeisterHailin Peng,
Keji Lai, Desheng Kong, Stefan Meister, Yulin Chen,

Xiao-Liang Qi Xiao-Liang Qi, Shou-Cheng Zhang Xiao-Liang Qi,

S ReARBNC et T HEW Rt CEsRen

M hecKkalsky etal  arXiv:0909.1840
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FIG. 2: a. Schematic of a 2D topological surface states of a
layered BiaSea nanoribbon under a magnetic field along the
ribbon length. The red and black arrows correspond to the
electric current and magnetic field lines, respectively. The
two cones on the top and side surfaces illustrate the Dirac
surface states propagating on all surfaces with linear disper-
sion. The green loops encireling the same magnetic flux stand
for phase coherent paths through which the surface electrons
interfere. b. SEM image of a Bi,Ses nanoribbon, 120nm in
width, contacted by four Ti/Au electrodes. The thickness of
the nanoribbon is measured by AFM (a line cut in the inset)
to be 55nm. ¢. Normalized magnetoresistance of the nanorib-
bon in radial magnetic fields at 2K. A clear modulation of the
resistance with a period of 0.627T is observed, corresponding
to one flux quantum (h/e) threaded into the cross section of
the nanoribbon. The solid red trace (up sweep) was taken
with a scan rate of 3mT /sec and the dashed black line (down
sweep) at 10mT /sec. d. Magnetoresistance in the full field
3 range of £97T. Inset on the left, magnetic field position of well
NWA developed resistance minima. Inset on the right, Fast Fourier

T transform (FFT) of the derivative dR/dB in the entire field
o MR A1 range. Locations of k/e and h/2e flux quantization are la-
beled.
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550 | FIG. 4: a. AB oscillations of the nanoribbon shown in the

set. The label of i /e marks the calculated ( from the cross s
tion 200nm = 50nm) 1/ B frequency in the FFT plot. b. A)
riodic magnetoresistance of a wide ribbon (570nm x 50n
and the SEM in the inset. The FFT spectrum shows no :
parent peaks. The location of /e is again indicated for cc
parison.
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Giant magnetofingerprint in non-metallic Bi;Ses.

J. G. Checkelsky!, Y. S Hor?, M. H Liu''t, D.-X. Q,u1 Rl Cava and N. P. Ong!
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FIG. 1: (a) Resistivity p vs. 7T in 4 samples (G3-G6) of
CaxBiz2—«Sez lightly doped with Ca to bring p; into the gap.
Samples with g» not inside the gap (M2, M5 and M10) dis-
play a metallic 7 dependence (shown x20). The inset is a
sketch of the surface states [10] crossing the gap from the VB
to the CB. (b) The LL index plot vs. field minima in the
SdH oscillations observed in 8 metallic samples (M1---MI11).
Negative (positive) index n represents the electron (hole) FS
pocket. As pp is lowered from the CB to VB, the FS area
A ~1/slope drops to zero before rising again.
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FIG. 2: Curves of p vs. H in Sample G4 at 0.3< T <8 K.
The curves are plotted vs. H (Panel a) and vs. In H (b). The
MR displays a sharp anomaly of amplitude 10% R in weak H.
In addition, large conductance fluctuations of amplitude up
to 0.5% are resolved. In Panel (b), the plot of p vs. logH at
0.3 K shows that p(H) ~ In H over 2 decades in H (dashed
line). The slope is equivalent to dG/dIn H = 200e® /h. The
correlation function C(B,T) of the fingerprint signals (H||z)
is plotted in Panel (¢) for T = 0.3 K (bold curve), 0.85 K
(medium) and 1.8 K (thin). C(B) oscillates vs. H instead of
decaying as a power law.

4 6 8 10
sof(a) Hilz ' 0.3,0.5,0.7, 1.3, 1.8, 4 K]

8
w,H (T)

FIG. 3: Curves of the magneto-fingerprint signal §G (7T, H) vs
H in Sample G4. The field H is aligned with Z (in Panel a},
with ¥ (in b), and with X||I (in ¢). In each panel, curves are
shown for five T between 0.3 and 4 K (in ascending order).
For clarity, adjacent curves are displaced vertically by 10 e’ /h.
At 0.3 K, both up-sweep and down-sweep traces are shown
superposed to emphasize retraceability.
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rms [5G] (e” / h)

FIG. 4: The magneto-fingerprint signal in tilted field. (Panel
a) The MR curves in G4 at selected field-tilt angles 4° <
6 < 85° at T = 2.2 K. Panel (b) shows the rms amplitude
rms[0G] vs. tilt angle # (6 is defined in inset). The fit to
rms[8G] = [a + beos®(6)](e? /h) yields a = 0.832 and b = 2.08
(solid curve). Panel (c¢) plots the correlation function C(B)
vs. H at selected 6.

2
AG(H) = —%[.40,,, + Aupin] InH,

p c G |msoG| A N

units[mQem | pum| e*/h | e*/h 10°% em™"
G3 30 |50 - - - 0.7
G4 15 |50 |8,000] 59 (178 5
GH 76 | 80 |1,7601 0.8 |35 1
Gge | 18 |s50|7.000] 1 [135 7
G7 16 |25 4800 09 |63 8
gs | 25 |10]1.050] 06 |20 5

TABLE I: Sample parameters. ¢ i the crystal thickness along
c. Values of G and rmséG (in €? /h) and p are measured at 0.3
K (except for G3, which was not cooled helow 4 K). We define
A= Aoy + Aspin (see Eq. B). The crystals are of nominal
size 2 mmx 2 mm X c. The Hall density ny = 1/eRpy is
inferred from the Hall coefficient Ry.



Very thin crystals

arXiv:1003.388

J. G. Checkelsky™, Y. §. Hor**, R. J. Cava® and N. P. Ong! =

o @[ e (o)

6G (87h)

1-08

+. 31 (a) Conductance G(T,0) in zero H (upper trace)
h G(T.H) at 14 T (lower) at T = 5 K for sample S1.
the H = 0 trace (superposition of 3 traces), retraceable
tuations are resolved, though suppressed in the trace at 14
b) Amplitude of the conductance fluctuation G = G—{(G)
th (G') asmooth background ) The T" dependence of the rms
1e 6G,p,, (so0lid circles in inset) fits well to T~"* (dashed
ve). (c) Fluctuations for V; =-75 V as a function of H.

(w2 "9

""541 f::ﬂ -::? c:) od BT 9N 4 Mwm -x 0
uH (T) V, (V)

FIG. 4: Panels (a) and (b) show conductance fluctuations for
sample S2 in the trace of G vs. H in sample S2 at 0.2 K with
Vy fixed at 0 V and at -00 V. (¢) Low-H magnetoconductance
at Vg = 0V and V; =-100 V. The solid lines are fits to Eq.
2. (d} A and the dephasing field Ho show a sharp maximum
near the charge-neutral point. Dashed line shows the value A
= 1/m predicted for dominant spin-orbit coupling (see text).

6’-2 Ho , 1 Ho
AG(H) _‘472,— |:h17{— — (-j-'i' TI—)]



Gate-tuned normal and superconducting transport at
the surface of a topological insulator

Benjamin Sacépé”’, Jeroen B. Qostinga™’, Jian Li’, Alberto Ubaldini, Nuno J.G.
Couto'~, Enrico Gianninmi® & Alberto F. Morpurgo®**
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Jleximsa 2. Teopusa

Tormoyrormyeckye CBOMCTBA 30HHBIX
IVIDIIEKTPUKOB

OO1mas KiraccmpuKaryss BO3MOXHBIX

TOIIOJIOTMYECKMX pa3 B pasMEePHOCTIX
d=1,2,3

CB43b ¢ Tpo0IeEMaMy CIIMHOBOVE XKVITKOCTV 11
px+ipy CBEPXIIPOBOIAIIErO COCTOTHA

MarnopaHOBcKMe (pepMMOHBL:
KaK HallacTb Ha VX CJIe[]
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Topological field theory of time-reversal invariant insulators
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Topological Insulators with Inversion Symmetry

Liang Fu and C.L. Kane

Bloch wavefunctions

[n k) = ¥ F|un k).

We require | kpc) = |inx) for reciprocal lattice vec-
tors G, so that the Brillouin zone in which k is defined is a
torus. This implies |uy ki) = €' T |un k). Time rever-
sal symmetry implies [H, ©] = 0, where © = exp(imS, ) K

©2% = —1. It follows that H(—-k) = ©H(k)0!,

There are special points k = I'; in the Brillouin zone
which are time reversal ivariant and satisfy —I'; =
I'; + G for a reciprocal lattice vector G. There are eight
such points in three dimensions and four in two dimen-

Phys Rev B
76, 045302 (2007)
75, 195312 (2006)

E () E )
_,/Q 3
2 w | el
az
: s
al al
k k
A, Ay A, A,

FIG. 2: Schematic representations of the surface energy levels
of a crystal in either two or three dimensions as a function of
surface crystal momentum on a path connecting A, and A;.
The shaded region shows the bulk continuum states, and the
lines show discrete surface (or edge) bands localized near one
of the surfaces. The Kramers degenerate surface states at A,

ks K A, and A can be connected to each other in two possible ways,
@ -k By r"k, shown in (a) and (b), which reflect the change in time re-
( (x = 6—) o A versal polarization m,m, of the cylinder between those points.
i s Case (a) occurs in topological insulators, and guarantees the
= ®) surface bands cross any Fermi energy inside the bulk gap.
. 2N x 2N unitaryv matrix
Ak, p
1\2 \/_,
( Y- det[w(l';)] —+1. Wmn(k) = (Um_k|O|tnk).
kE [ " Pf[u:(I‘;»)]
dl 1
K, A (©a|Ob) = (bla) and O = —1
(d) N 0T -

[1

nNe=1n;4; =0,1

s
(-1 =TJ& D™= Si=(nynana):

—



Topolog-ica] field theory of time-reversal invariant insulators
Xiao-Liang Qi, Taylor L. Hughes and Shou-Cheng Zhang
Phys. Rev. B 78, 195424 (2008) — Published November 24, 2008

TRE TOPOLOGICAL INSULATORS IN 2 +1
DIMENSIONS AND ITS DIMENSIONAL

REDUCTION
03 . C)h k
Hi— chah k) cxs HchI(h.(k)ck ZA( q)C]T(Jrq/2 di )Ck q/2
K,q
oy = h 2 dk, /dk foy (k Cy = —/dk /(lkyfly cZ
with fzy (k) = d((z;;\(k d(é)k j ol E
" Ji = oH
ai(k) = —i «akl—lak> Y.
R o(B) ~ po = o B
C1 ;
= Lo A @ |
] 27[' ! T ‘S‘eﬁ' —— 4_"{‘/\(1217/\(ltAuel-“/TayATq

e=h=1



Example: two band models

3 The occupied band satisfies
— ' a. . -
h(k) = Z da(k)O’ L é(k)l[ (d(k)-o)|—,k) = — |d(k)||—, k), which thus corresponds
a=1 to the spinor with spin polarization in the —d(k) direc-

1 . od  ad
A = / ("I,/ P Bk ok
. d(k) A "
W
v h(k) = (sink,)o, + (sink,)o,

+ (m +cosk, +cosk,) o,

BZ of k S, of d(k)
1, O mi< 2
FIG. 1: Illustration of the Berry’s phase curvature in a two- Cl — — > —=92 <M< 0
band model. The Berry's phase ¢~ A - dr around a path C' in 2l
the BZ is half of the solid angle subtended by the image path 0' otherwise.
d(C') on the sphere Ss. .
m+2 k,—ik,
HenpepbiBHbIV npegen: 0<m +2<<1 Aik)= \ k, +ik, —m—2



Dimensional reduction "~ T+ e dt e e

+m Ct_ o A7 (14)

npmBoguT kK cymme 1D uneHoB

o, — 10,
H = Z [C}:y(m) Ck, (2 +1) + h.c.

2
ky,x
& Z c}:y (z) [sinkyoy + (M + cosky) 0. ], ()
ky,x
(C) ILE (d) 0.5 \ -“1y — _Eyt. -‘1.1' - O.
-£ .......... Peciisannna,,, - ax " \1 At
& -~ ——m———mmmm - - T
'---.............(......--~-"—- \ AQ — / (It Z ‘];l‘ (‘A‘y)
\ 0 :
i B Y o o5 ky
n B : At
with At = 27/L,E,. In the second equality we use = Z AP (ky)lg

the relation between the current and charge polarization
P.(k,) of the 1D systems J,(k,) = dP,(k,)/dt. In the

27 s ‘1 .
‘ AQ = —?f dky%. = ogAtE, L, = 2noyg = integer
: L fes

u



Topological BF field theory description of topological insulators

Gil Young Cho! and Joel E. Moore!:?

Topological phases of matter are described universally by topological field theories in the same
wayv that svmmetry-breaking phases of matter are described by Landau-Ginzburg field theories.
We propose that topological insulators in two and three dimensions are described by a version
of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state,
this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the
realization of this phase as paired integer quantum Hall effect states. The BF description can be
motivated from the local excitations produced when a 7 Aux is threaded through this state. For the
three-dimensional topological insulator, the BF description is less obvious but quite versatile: it
contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields “axion
electrodynamics”, i.e.. an electromagnetic F - B term, when time-reversal symmetry is broken and
the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory
allows one to obtain fractional quantum Hall states starting from integer states, BF theory could
also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics
of point-like and line-like objects.

1 MaruwrosnekTpmdeckum 3 PeKT
Ssp =+ / dPrdt—=" 0, A,00A, P PP
ST B IIPVICYTCTBUM I11€JI Ha IIOB-CTU

L7151 OeciriesieBovi IIOBEPXHOCTY BbIBEIIEHO
3dPeKTMBHOE NeVicTBUE C AUPAKOBCKMMIU dPepMIMOHaAMM
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Surface States of Topological Insulators: The Dirac Fermion in Curved Two-Dimensional Spaces

t

Dung-Hai Lee'” PRL 103, 196804 (2009)
Q)
n that the metric is conformally related to the Euclidean
metric everywhere, i.e.,
B
% ) ds? = e 2PO[(dx' P + (dx?)?] (1)

Such a coordinate system is called “isothermal.” In termns
of 1isothermal coordinates the Dirac Hamiltonian read

S H = A% z O'g(x)["'l.ak + il (x) — iAk(X)]. (2)
k=12
(b)
! |||"“":tm :‘E il “""“"“ In the absence of magnetic field (ng = 0) the eigenspec-
ll “h ,!1 .ﬂm trum is shown as Fig. 2(b). At m = 0 there is one pair of
e f;‘« :| s cigenvalues with £ = 0, thus there is only one Dirac point.
l"“ll” i 4 m” ml For ng > 1 the eigenspectrum of Eq. (7) consists of
|||"" i """" energy levels which are independent of m: E, =
FIG. 2 (color online). The eigenspectra of Eq. (7) under (a) > n(n¢, + n)/R?‘ where n= 0 as shown in the inset

tant tic field and (b tic field. i g &
Raian et e s of Fig. 2(a). This is the relativistic Landau level on a sphere

Singe Dirac point on Kak 3To coBMeCTUTb ¢ OTKpBITHEM
the sphere ITIeJIVI B TOHKOUI TUTAaCTUMHKE ?



I'yHHenb oyt cB43m ¢ aHTUIIOZAMM

Yi ZhangYi Zhang, Ying RanYi Zhang, Ying Ran,
Ashvin Vishwanath arxiv:0904.0690

__ZH R
_— . | T ——

i |  Tomnkas OeckoHeuHas roractiaka TH
5L Ha BepxHeVt 1 HVKHEV TOBEPXHOCTSIX
P
| KVBYT JIMPAKOBCKIE IIEKTPOHBI

==Y (kak B rpadpeHe, HO HeT 4-BBIPOXKIIEHIS)

CKBO3HOV TYHHeJIb pagnyca R comepxmr Ha
BHYTPeHHEeV IIOBEPXHOCTV COCTOSAHMS CO CIIEKTPOM

E2(k) = R2(k2 + n2/R?) n=m +7% - (/D)

m — uernoe 4Yncrio



General classification: A.Kitaev, A.Ludwig et al

Abstract. Gapped phases of noninteracting fermions. with and without charge conservation and time-reversal symmetry.
are classified using Bott periodicity. The symmetry and spatial dimension determines a general universality class. which
corresponds to one of the 2 types of complex and 8 types of real Clifford algebras. The phases within a given class are further
characterized by a topological invariant, an element of some Abelian group that can be 0. Z. or &>. The interface between
two infinite phases with different topological numbers must carry some gapless mode. Topological properties of finite systems
are described in terms of K-homology. This classification 1s robust with respect to disorder. provided electron states near the
Fermi energy are absent or localized. In some cases (e.g.. integer quantum Hall systems) the X-theoretic classification 1s stable
to interactions. but a counterexample is also given.

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T). The 7(Cy ) and o (Rg ) columns ndicate the range of topological invariant. Examples of fopologically
nontrivial phases are shown 1n parentheses.

g m(C) d=1 d=2 d=3 q To(Rg) d=1 d=2 d=3

0 Z (IQHE) 0 Z 10 symmetry T only

1 0 (px+ipy. e.g.. StRu) (3 He-B)
Above: msulators without time-reversal 1 I 0, Symineiry , T _ only . I a?“,‘ 0
symmetry (1.e.. systems with Q symme- = (Majorana chain)  ((py+ipy)1 +(pv—ipy)|)  (BiSH)
try only) are classified using complex K- :
dheory. ) £ comp y 1 T only Tand Q

- > (TMTSF)X) (HeTe)

Right: superconductors/superfluds (sys-
tems with no symmetry or I-symmetry
only) and time-reversal mvariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

Tand Q

-~ O\ W e W
c oo Mo

10 symmetry




Connections to spin-liquids and
p+ip superconductors

OCHOBbI:

A . Yu.Kitaev, Ann.Phys. 321, 2 (2006).

G.Moore and N.Read, Nucl.Phys. B 360, 362 (1991).
N.Read and D.Green, Phys. Rev. B 61, 10267 (2000).
D.Ivanov, Phys.Rev.Lett. 86, 268 (2001).

HenaBHmne padoThl

Phys. Rev. B 79, 180501(R) (2009)
Exactly solvable pairing model for superconductors with px+ipy-wave symmetry
M. IbanezM. Ibanez, Jon LinksM. Ibanez, Jon Links, G. SierraM. Ibanez, Jon
Links, G. Sierra, and S.-Y. Zhao

Gauge symmetry in Kitaev-type spin models and index theorems on
odd manifolds Yue Yu arXiv:0704.3829 Nucl. Phys. B 799, 345 (2008)



Anvons in an exactly solved model and beyond

Alexel Kitaev

s xr T v, .y z 2
H=-J; E 0; 0} — Jy E o0 — J E T 0}y

z-links y-links 2-links
All products W, = o{oios0i0i0; commute with H

* = ibe. Majorana representation

oo & o,
®q,

Q
-~
I
o
L]
n
=Y,
-
I
~
o
e
)
Q



o ®© O y-

o 0O

; ‘ "
H\'c.rbzt-free — IZ AjijCk, ‘4jk R 2']0)&“]' g *
3.k

O —

o~ 0 1 f(c .
1Alq) = (—z'f(q)* zf(() l)) . Elg) = £ fla)], JEL IS0

fla) = 2(Jae @) + Jye' @02 + ),

gapless

gapped

Qe = %(ll + §(lz (mod qu,qz) J=1 \\ ///
F A 2N
1, 9 — =3+ 1qz  (mod qi,qp) Jy=5=0 J=J=0

(=0 =)

£(q) = £1/gas 0qa dqa,

where dq =q— q, or dq=q+ q,.

single Dirac fermion mode!




B-phase can be made gapful

1) Including of magnetic field, or NNN
fermionic couplings (Kitaev 2006)

gy [ Ala)  if(q) oy o T L AT
1A(q) = (_Z.f(q), —A(q))’ e(a) = V| f(a)? + Alaq)?,

g(q) = £4/3J2|6q|2 + AZ,

where dq = q — ¢, or dq = q+ (.

1 Jdm  dm

Chern number = 47/ (% T

m) dg,dg, = sgn A = £1.

2) Going to decorated honeycomb lattice
(Yao-Kivelson 2007)



energy gap A in unit of J'

Energv levels in unit of J

y-link z-link
o7+ Y Store Y U
y'-link z'-link

Critical point J' = /3.J.
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(b)

Transition is between
topological insulator
and trivial insulator

Similar transition was
predicted by Read &
Green for p-wave
superconductors

(1)



MarviopaHOBCKVie COCTOSTHIIS B
[HeHTpaX CBepXIIPOBOILAIIINIX BUXPpen U
HeaOeJjleBa OOMeHHas CTaTUCTUKA

D.A.Ivanov PRL 2001  ¥(r.6) = A(r)[e® 1) + [L1) ] (ke + k).

H = /d2 [\Iﬁ (2— - bp) Ty +eA(r) Ul (V, +4V,) 1 + h.c.] .
m 2

E, = nuwg, The zero-energv level becomes a Majorana fermion:

T(Ty) = exp (i%agl))

G 5 % 7(T3) = exp (

(2)
o,

Mzi

_____

-
-
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-
-

---------- *’ ol - .

j j 4 vortices:
y— wm Non-Abt sl

FIG. 3. Elementary braid interchange of two vortices. on- rans. T(TQ ) = exp Z c3C9 ) =




Superconducting Proximity Effect and Majorana Fermions at the
Surface of a Topological Insulator
Phys. Rev. Lett. 100, 096407 (2008) L. Ful. Fuand C. L. Kane

Suppose that an s-wave superconductor is deposited
p5 o on the surface. Due to the proximity effect, Cooper pairs
Hy = ¢1(—ivd -V — ). can tunnel into the sm ffue states. This can be described

by adding V = Aw] ! Ll + h.c. to Hy, where A = Age*®
Nb
N - .
= UIHT /2 U = ((dr, %), @], —o])T

H = —ivt*0 -V — ut* + Ao(7° cos ¢ + 7¥ sin @).

_ _ _ S cx = (V1 + 'tk ‘UI’_l.k)/\/@ } Chiral
e — v — 2 ‘
Ex = £v/(2v[k| — p)? + Af. SBng =i i states

i o
- lr"J,.k )



AHanorusa (HenonHas)
C pX+ipy CBEPXMPOBOAHNKOM

H = > o (vlk| —p)e (k—I—(A ’Hk( k—l—h c.)/2. (1)

Time-reversal operator © = io¥K ©,H] =
Oy =—v]_, Oy, =7;_,  original fermions
Ocy = e%c*,  Ocf = e ey chiral fermions

Due to phase factors the current Hamiltonian (1) is T-inv.
whereas px+ipy superconductor breaks T-invariance



CeepxmipoBoggamv 3 et
Oymm3ocTtu Ha moBepxHOCTU T

* (C yuyeTOM IPMMECHOTO paccesHMA Ha IIOBePXHOCT,
KOTOpOe He 004KHO TPUBOAUTH K pacHapyBaHUIO
(n3-3a TOrO, 4TO T-MHBapPMAaHTHOCTH He HapyIlleHa)

Nb Nb

I

OkcrepuMeHT B.Sacepe et al - pxo3ed. TOK Ha moBepxHOCTU

3aBucmmocts I (L, T) - criocod

M3MepuThb KO3 d. nndPpysum

IIOBEPXHOCTHBIX COCTOSTHUM



VNunyimpoBaHHast CBepXIIPOBOAVIMOCTE U
MaVOpPaHOBCKME COCTOSTHMSI

e Superconducting Proximity Effect and Majorana Fermions at the
Surface of a Topological Insulator

Phys. Rev. Lett. 100, 096407 (2008) L. FulL. Fuand C. L. Kane
OHnu xe: arXiv:0804.4469, arXiv:0903.2427

 Phys. Rev. Lett. 102, 216404 (2009) Electrically Detected
Interferometry of Majorana Fermions in a Topological Insulator
A. R. AkhmerovA. R. Akhmerov, Johan NilssonA. R. Akhmerov,
Johan Nilsson, and C. \W. J. Beenakker

 Manipulation of Majorana fermion, Andreev reflection and
Josephson current on topological insulators Yukio TanakaYukio
Tanaka, Takehito YokoyamaYukio Tanaka, Takehito Yokoyama,
Naoto Nagaosa arXiv:0907.2088

 Majorana Fermion Induced Resonant Andreev Reflection K. T.
LawMajorana Fermion Induced Resonant Andreev Reflection K.
T. Law, Patrick A. LeeMajorana Fermion Induced Resonant
Andreev Reflection K. T. Law, Patrick A. Lee, T. K. Ng

arXiv:0907.1909
 Detecting Majorana bound states induced by a

tamnmalacicaal incrilatAar




Fermionic Hopf solitons and Berry’s phase in topological surface superconductors

Ying Ran,!»?:* Pavan Hosur.! and Ashvin Vishwanath!:2

arXiv:1003.1964v2

FIG. 1: The Hopf map: fu : ¥ — n is shown by displaying
contours of equal n. Points at inﬁmtw are all mapped to the
same point on the sphere fu(oc) = 2. In red is f,{ [h = 2],
in green f5'[—2], in blue fi'[%]. il vellow f5'[d

the unit linking of any pair of curves. which can be used to
define the Hopf texture.

o 02 4 0. 0 T
R 2 Rz ciralew

3 ”-;u 0.2 : 04 0.6 : 0% 1 l.)
00 vortex A wortax In By
chrele anly

| F1G. 3: 'T'he spectral How of the lowest 20 eigenvalues when
~‘ the pairing on the surface of the topological insulator in Fig.
| 2 is linearly interpolated between two limits: A(z,A) = (1 —
A)Ao(z) + AA1(x). Ao(z) is constant over the whole surface.
TOP: Ay(x) has a unit phase winding (vortex) in both the R,
and F2 cycles of the torus, i.e. the Hopf texture. BOTTOM:

Ai(z) has a unit phase winding in only the F; cycle. It is
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Anomalous Josephson current via Majorana bound states in topological insulators

P. A. Ioselevich? and M. V. Feigel'man'? (PRL, 2011)
'I.. D. Landau Institute for Theoretical Physics, Kosygin str.2, Moscow 119334, Russia and
2 Moscow Institute of Physics and Technology, Moscow 141700, Russia

Figure 1: The system: a slab of T1 has both surfaces cov-
ered by superconductor. A hole channel in the layer hosting
a vortex forms an SNS-junction between the surfaces. The
superconducting surfaces are connected away from the hole,
completing an SNS-circuit with supercurrent flowing through
the hole.

-7 0 n
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Figure 2: The anomalous current f.(y) is computed for
psR = 2 (dashed line) and psR = 3 (blue line). Other pa-
rameters are fixed as ps£ = 10, psE.. =5, prpL =6, T =
0.05A. The extrema of I.(y) occur whenever a pair of con-
jugated levels crosses at € = 0.

Parity of the Ground State changes odd number of times while
phase ¢ rotates by 2m whereas fermion parity conserves

The result: 4m — periodic Josephson current



