Методы поиска изображений по содержанию

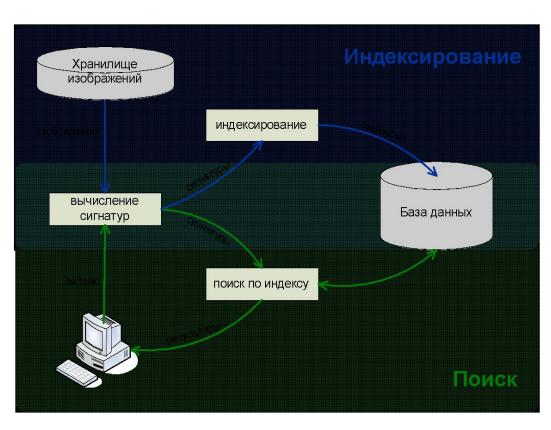
Наталья Васильева HP Labs, Russia; СПбГУ

nvassilieva@hp.com

29 ноября 2007

План

I. Обзор методов поиска изображений

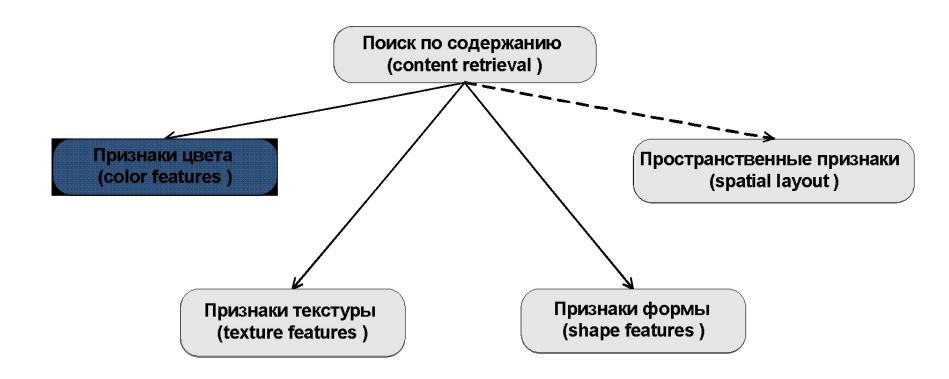

- 1. Основные направления исследований
- 2. Уровни содержания изображения
- 3. Цвет
- 4. Текстура
- 5. Форма объектов

II. Синтез данных в контексте CBIR

- 1. Существующие решения и их недостатки
- 2. Альретнативные подходы
- 3. Поиск в частично-аннотированной базе
- 4. WTGF: Weighted Total with Gravitation Function
- 5. Адаптивный поиск

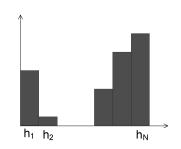
CBIR: направления исследований

Поиск по содержанию – Content Based Image Retrieval (CBIR)


- Выделение признаков изображений
- Многомерное индексирование
- Проектирование систем поиска

Традиционная архитектура систем CBIR

Уровни содержания изображения



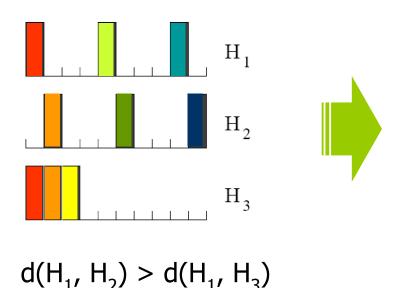
Поиск по содержанию

Цвет

$$F(I) = (h_1^{I}, h_2^{I}, ..., h_N^{I})$$

Метрики: L_1 , L_2 , L_∞

Мат. ожидание, дисперсия, 3-ий момент: для каждого цветового канала

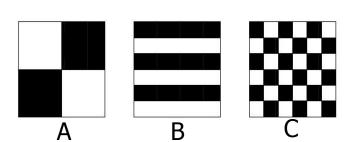

$$F(I) = (E_{1}^{I}, E_{2}^{I}, E_{3}^{I}, \sigma_{1}^{I}, \sigma_{2}^{I}, \sigma_{3}^{I}, s_{1}^{I}, s_{2}^{I}, s_{3}^{I})$$

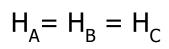
Метрики: \sim L₁

Stricker M., Orengo M. Similarity of Color Images. Proceedings of the SPIE Conference, vol. 2420, p. 381-392, 1995

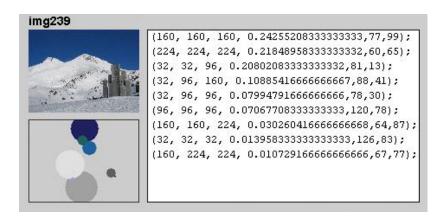
Цветовые гистограммы – недостатки

1. Не учитывается схожесть цветов:

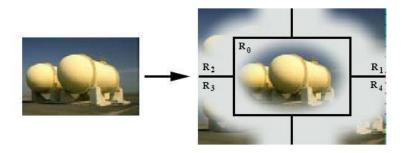



- Кумулятивные гистограммы
- $d(H_1, H_2) = \sqrt{(H_1 H_2) \cdot A \cdot (H_1 H_2)^T}$ A матрица с коэффициентами «схожести» цветов

Niblack W., Barber R., et al. The QBIC project: Querying images by content using color, texture and shape. In IS&T/SPIE International Symposium on Electronic Imaging: Science & Technology, Conference 1908, Storage and Retrieval for Image and Video Databases, Feb. 1993


Цветовые гистограммы – недостатки

2. Не учитывается пространственное расположение цветов:



$$f_i^A = (a_i, b_i, c_i, weight_i^A, x_i^A, y_i^A)$$
 і = 1..N – число цветов; (a_i, b_i, c_i) – параметры цвета і; weight_i – количество цвета і на изображении A; (x_i, y_i) – координаты центра цветового пятна.

Васильева Н., Новиков Б. Построение соответствий между низкоуровневыми характеристиками и семантикой статических изображений. Труды RCDL'2005.

Пространственное расположение цветов

- Разбиение изображения на фиксированные блоки
- «Нечеткие области»

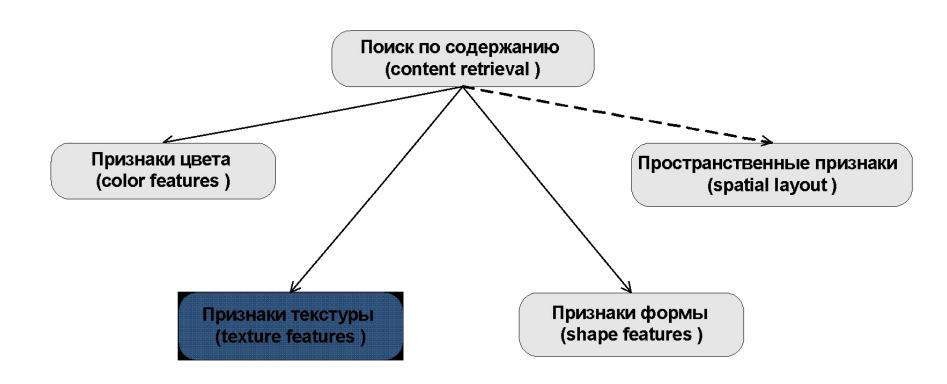
Stricker M., Dimai A. Spectral Covariance and Fuzzy Regions for Image Indexing. Machine Vision and Applications, vol. 10., p. 66-73, 1997

Сегментация

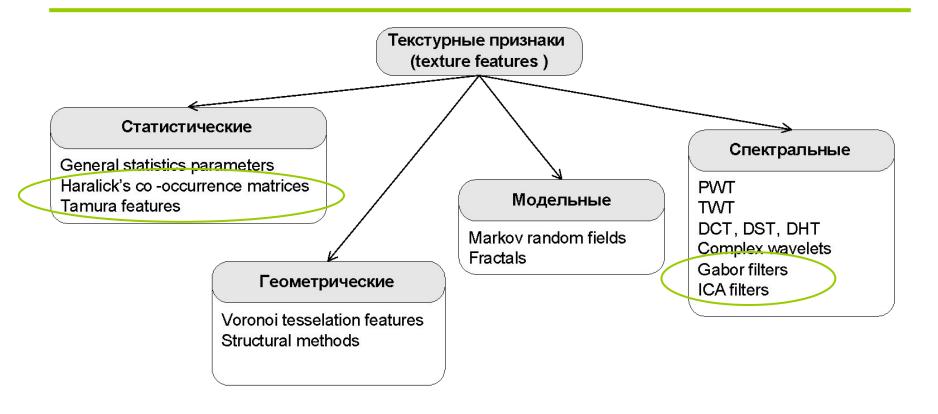
Гистограммы или моменты? (1)

Stricker M., Orengo M. Similarity of Color Images. ... (3000 изображений)

		rank of the image			max.
index sim. mea	asure				rank
	W_1	4	5	8	8
9 moments	W_2	2	8	6	8
	W_3	4	6	9	9
8/2/2	L_{∞}	34	98	79	98
16/4/4	L_{∞}	3	57	42	57
cum. hist. $8/2/2$	L_1	53	162	30	162
16/4/4	L_1	33	354	8	354
8/2/2	L_2	65	158	34	158
16/4/4	L_2	15	306	11	306
8/2/2	L_1	138	394	48	394
16/4/4	L_1	4	132	6	132
histogram $8/2/2$	L_2	71	541	102	541
16/4/4	L_2	10	1358	75	1358


Cеминар Московской Секции ACM SIGMOD 29 11 2007

Гистограммы или моменты? (2)


База Corel Photo Set (285 изображений) эксперимент в рамках дипломной работы М. Теплых

	Полнота	Точность
ColorHist	56,77 %	23,02 %
ColorMoment	55,98 %	25,06 %

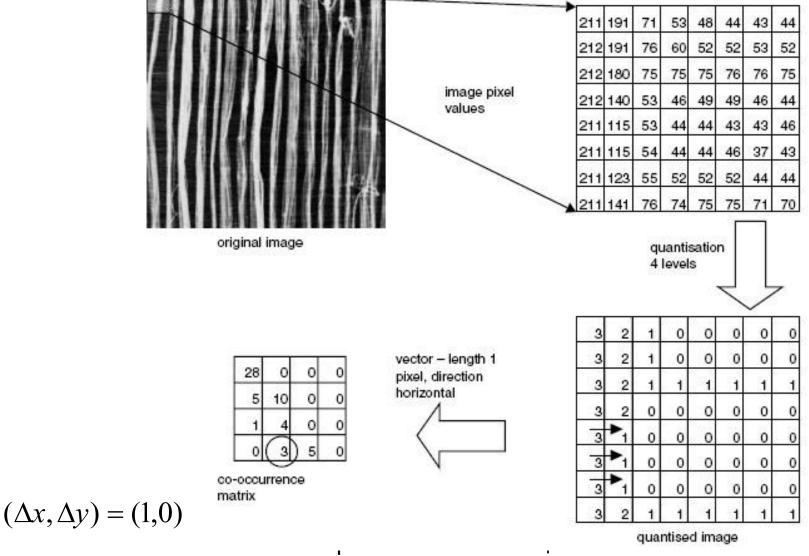
Поиск по содержанию: текстура

Текстура: статистические

- Матрицы смежности Haralik's co-occurrence matrices
- Признаки Tamura Tamura features (Tamura image)

Матрицы смежности

Grey Level Co-occurrence Matrices (GLCM):


Матрица частот пар пикселей определенной яркости, расположенных на изображении определенным образом относительно друг друга.

$$C(i,j) = \sum_{p=1}^{N} \sum_{q=1}^{M} \begin{cases} 1, \, ec$$
ли $I(p,q) = i, \, I(p + \Delta x, q + \Delta y) = j \\ 0, \, u$ наче

 $(\Delta x, \Delta y)$ – параметр сдвига, задающий взаимное расположение пикселей;

I(p,q) – уровень яркости пикселя изображения, расположенного в точке (p, q).

Матрицы смежности: пример

SIGMOD 29 11 2007

Матрицы смежности: характеристики

Статистические параметры, вычисленные по матрицам:

$$Energy = \sum_{i} \sum_{j} C^{2}(i,j)$$
 - минимален, когда все элементы равны

$$Entropy = -\sum_{i} \sum_{j} C(i,j) \log_2 C(i,j)$$
 - мера хаотичности, максимален, когда все элементы равны

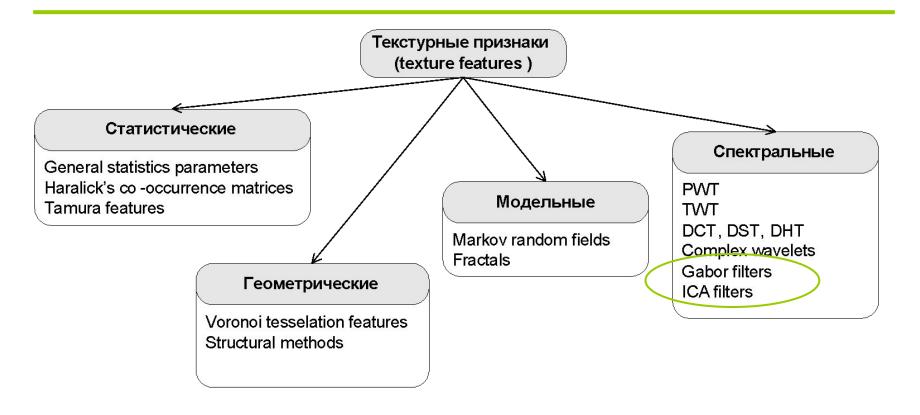
$$Contrast = \sum_{i} \sum_{i} (i-j)^2 C(i,j)$$
 - мал, когда большие элементы вблизи главной диагонали

$$Inverse\ Difference\ Moment = \sum_i \sum_j \frac{C(i,j)}{1+(i-j)^2}$$
 - мал, когда большие элементы далеки от главной диагонали

Признаки Tamura

Характеристики, существенные для зрительного восприятия:

- Зернистость (coarseness)
- Контрастность (contrast)
- Направленность (directionality)
- Линейность (line-likeness)
- Регулярность (regularity)
- Грубость (roughness)


Tamura image:

Coarseness-coNtrast-Directionality – точки в трехмерном пространстве CND

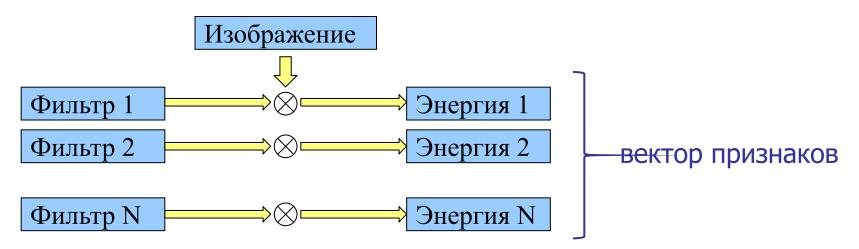
Признаки:

- Евклидово расстояние в 3D (QBIC)
- 3D гистограмма (Mars)

Текстура: спектральные

- Вейвлет-признаки, фильтры Габора
- Фильтры ІСА

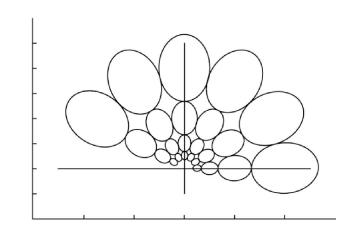
Вейвлет-признаки


Вейвлет-анализ – разложение сигнала по специальному базису:

$$f(x) = \sum_{j,k} \alpha_k \psi_{j,k}(x)$$

Базисные функции:

$$\psi_{j,k} = 2^{j/2} \varphi(2^j x - k)$$
 - масштабирующая функция $j,k \in \mathbb{Z}, \quad \varphi(x) \in L^2(R)$ - порождающий вейвлет

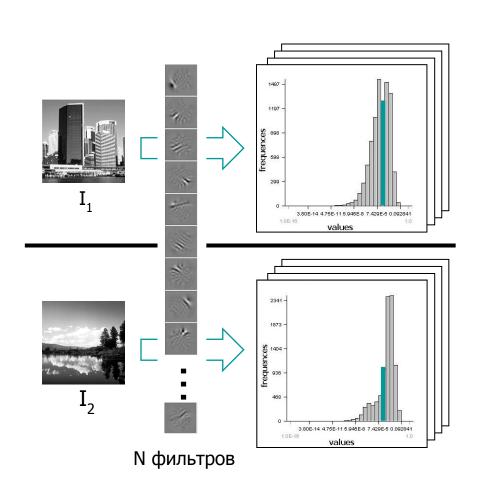

Набор базисных функций – банк фильтров

Фильтры Габора

Порождающий вейвлет: функция Габора

$$g(x,y) = \left(\frac{1}{2\pi\sigma_x\sigma_y}\right) \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right) + 2\pi jWx\right]$$

Набор фильтров:


 $a = (U_h / U_I)^{-1/(S-1)}$

$$g_{mn}(x,y) = a^{-m}g(x',y'), \quad a>1, \quad m,n={\rm integer}, \quad {\rm m}=0,1,...,{
m S-1},$$
 $x'=a^{-m}(x\cos\Theta+y\sin\Theta),$
 $y'=a^{-m}(-x\sin\Theta+y\cos\Theta),$
 $\Theta=n\pi/K$
К – общее число направлений,

S — число масштабов, U_{h} , U_{l} — максимум и минимум рассматриваемых частот.

Фильтры ICA

Фильтры получены при помощи анализа независимых компонент

$$KL_H(H_1, H_2) = \sum_{b=1}^{B} (H_1(b) - H_2(b)) \log \frac{H_1(b)}{H_2(b)}$$

$$dist(I_{1}, I_{2}) = \sum_{i=1}^{N} KL_{H}(H_{1i}, H_{2i})$$

H. Borgne, A. Guerin-Dugue, A. Antoniadis. Representation of images for classification with independent features. Pattern Recognition Letters, vol. 25, p. 141-154, 2004

Сравнение текстурных признаков

Table 6: TRECVID evaluation – mean average precision retrieval

Feature	Single	Combined with HSV
Gabor-2-4	3.93%	4.31%
Co-occurrence homogeneity	2.85%	3.03%
Tamura standard all	2.57%	3.43%
Tamura CND	1.65%	2.72%
Tamura coarseness-2	0.97%	2.49%

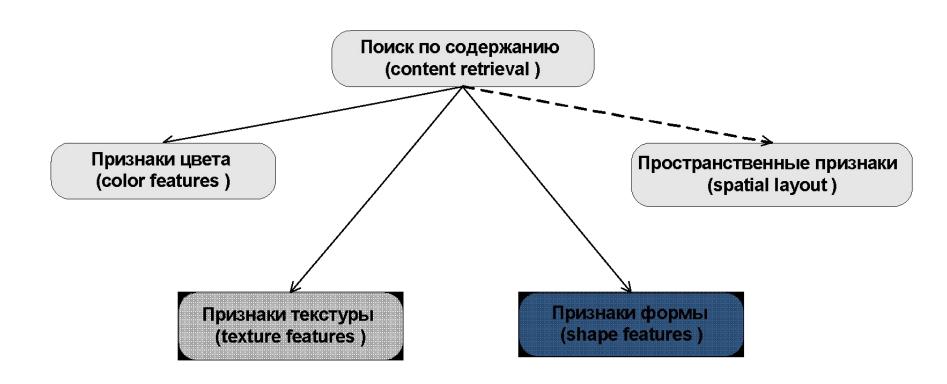
В контексте задачи поиска!

Table 7: ImageCLEF retrieval results

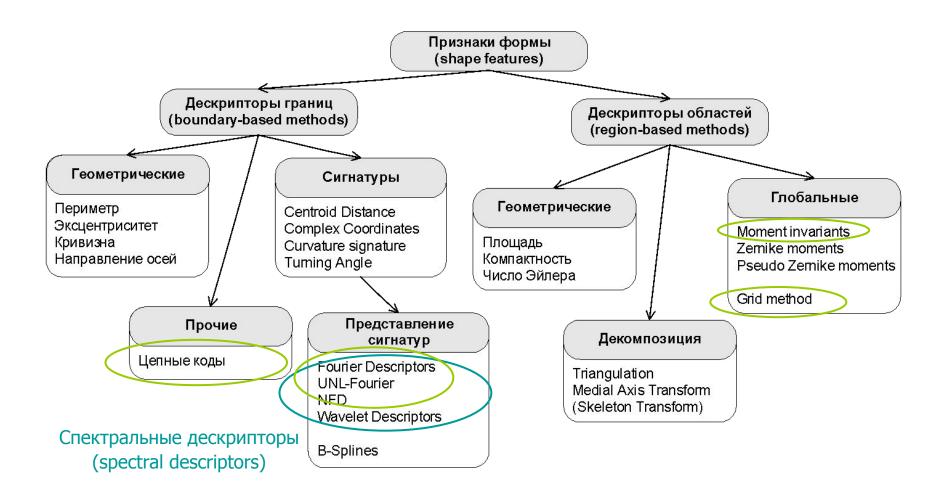
Feature	Mean average precision
Gabor-2-4	35.3%
Co-occurrence homogeneity	19.8%
Tamura standard all	20.7%
Tamura CND	18.4%
Tamura coarseness-2	14.5%

P. Howarth, S. Rüger. Robust texture features for still image retrieval. In Proc. IEE Vis. Image Signal Processing, vol. 152, No. 6, December 2006

Сравнение текстурных признаков (2)


Фильтры Габора v. s. фильтры ICA

Эксперименты по классификации изображений:


- Коллекция ангиографических снимков
 - Фильтры ICA лучше на 13%
- Коллекция текстур Brodatz
 - Фильтры ICA лучше на 4%

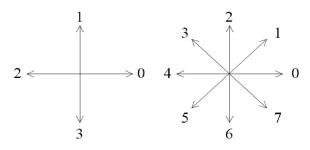
Snitkowska, E. Kasprzak, W. Independent Component Analysis of Textures in Angiography Images. Computational Imaging and Vision, vol. 32, pages 367-372, 2006.

Поиск по содержанию: форма


Форма объектов

Требования к признакам формы

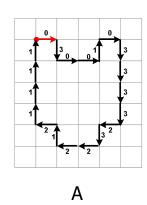
- Инвариантность к параллельному переносу
- Инвариантность к изменению масштаба
- Инвариантность к повороту
- Устойчивость к незначительным изменениям формы
- Простота вычисления
- Простота сравнения

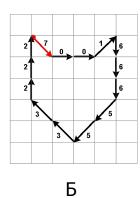

Форма объектов: границы

- Цепные коды (Chain Codes)
- Дескрипторы Фурье (Fourier Descriptors)

Цепные коды

Нумерация направлений для 4-связного и 8-связного цепных кодов:




A: 03001033332322121111

Б: 70016665533222

Пример:

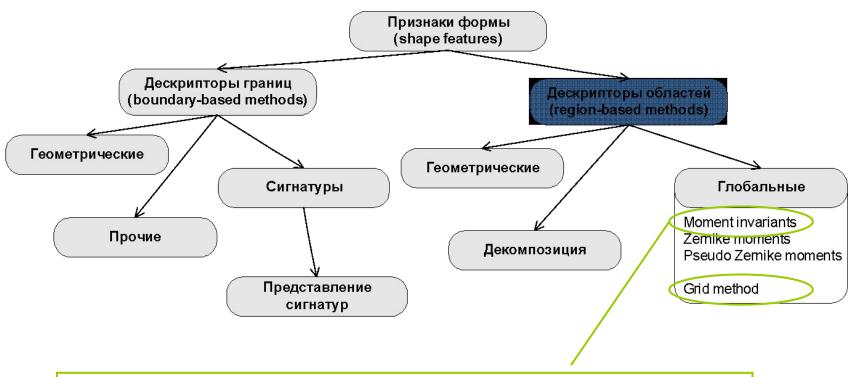
Инвариантность к выбору начальной точки: минимальный код

Инвариатность к повороту: разности цифр кода

Дескрипторы Фурье

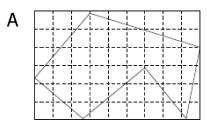
- 1. Вычисление сигнатуры (2D -> 1D):
 - Расстояние до центроида до границы
 - Комплексные координаты: z(t) = x(t) + iy(t)
 - ...
- 2. Вычисление коэффициентов Фурье (s(t) сигнатура):

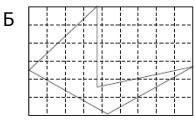
$$u_n = \frac{1}{N} \sum_{t=0}^{N-1} s(t) e^{-j2\pi nt/N}$$


3. Нормализация (NFD – Normalized Fourier Descriptors):

$$\frac{|u_1|}{|u_0|}, \frac{|u_2|}{|u_0|}, \dots, \frac{|u_{N-1}|}{|u_0|}$$

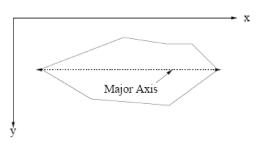
4. Сравнение:


$$d = \left(\sum_{n=0}^{N_c} \left| f_I^n - f_J^n \right|^2 \right)^{\frac{1}{2}}$$


Форма объектов: области

- Грид-метод (Grid-method)
- Инвариантные моменты (Moment invariants)

Грид-метод



Инвариантность:

Нормализация по главной оси:

- направление;
- размер;
- позиционирование на гриде.

Инвариантные моменты

Момент порядка (р+q) двумерной непрерывной функций:

$$m_{pq} = \iint x^p y^q f(x, y) dx dy$$

Центральные моменты для f(x,y) – дискретного изображения:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y), \quad \overline{x} = \frac{m_{10}}{m_{00}}, \quad \overline{y} = \frac{m_{01}}{m_{00}}$$

Вектор признаков:

С использованием нормированных центральных моментов был выведен набор из 7 инвариантных к параллельному переносу, повороту и изменению масштаба моментов.

Сравнение признаков формы

Table 1. Average retrieval efficiency values for different methods. T is the short list size of retrieved images

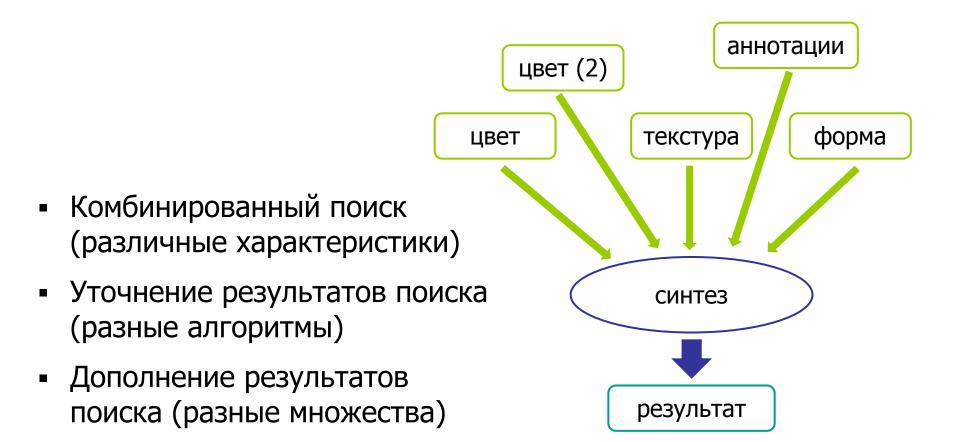
Methods	T=5	T=10	T = 15	T=20
Reduced chain code	55.1%	47.6%	50.0%	60.6%
Fourier descriptors (FD)	72.2%	76.9%	75.9%	74.9%
UNL features	81.3%	79.9%	83.7%	89.3%
Moment invariants (MI)	84.7%	86.3%	86.8%	87.7%
Zernike moments	66.9%	66.5%	70.4%	78.2%
Pseudo-Zernike moments	66.9%	66.5%	70.4%	78.2%
MI and FD	93.8%	87.3%	87.1%	89.6%
MI and UNL	93.3%	89.2%	89.3%	91.1%

Mehtre B. M., Kankanhalli M. S., Lee W. F. Shape measures for content based image retrieval: a comparison. Inf. Processing and Management, vol. 33, No. 3, pages 319-337, 1997.

Признаки в системах поиска

	Цвет	Текстура	Форма
QBIC	Гистограммы (HSV) $dist^2 = H_1 A H_2^T$	Tamura Image, Euclid dist	Геометрические для границ + моменты
VisualSEEk	Гистограммы (HSV), Color Sets, Location info		
Netra	Гистограммы (HSV), Color codebook, кластеризация	Фильтры Габора	Fourier-based (Фурье)
Mars	Гистограммы, HSV $dist = 1 - \sum_{i=1}^{N} \min(H_1(i), H_2(i))$	Tamura Image, 3D Histo	МFD (Фурье)

План

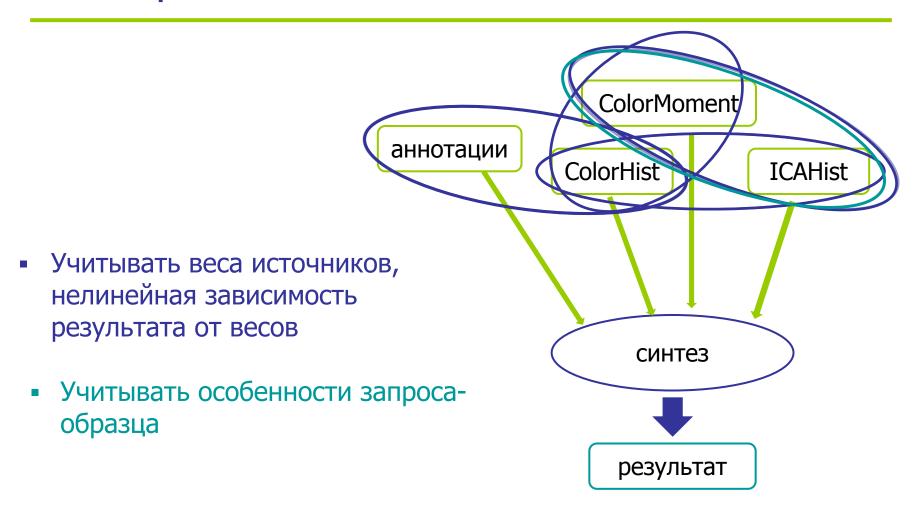

I. Обзор методов поиска изображений

- 1. Основные направления исследований
- 2. Уровни содержания изображения
- 3. Цвет
- 4. Текстура
- 5. Форма объектов

II. Синтез данных в контексте CBIR

- 1. Существующие решения и их недостатки
- 2. Альретнативные подходы
- 3. Поиск в частично-аннотированной базе
- 4. WTGF: Weighted Total with Gravitation Function
- 5. Адаптивный поиск

Синтез данных в контексте CBIR


Существующие недостатки

- CombMax, CombMin, CombSum
- CombAVG
- CombMNZ = CombSUM * number of nonzero similarities
- ProbFuse
- HSC3D
- Линейная комбинация (CombSum с весами)

Недостатки:

- Не учитываются веса источников
- Если учитываются:
 - линейная зависимость итогового ранга элемента от его рангов в различных источниках и весов источников
- Не учитываются особенности запроса-образца

Альтернативные подходы

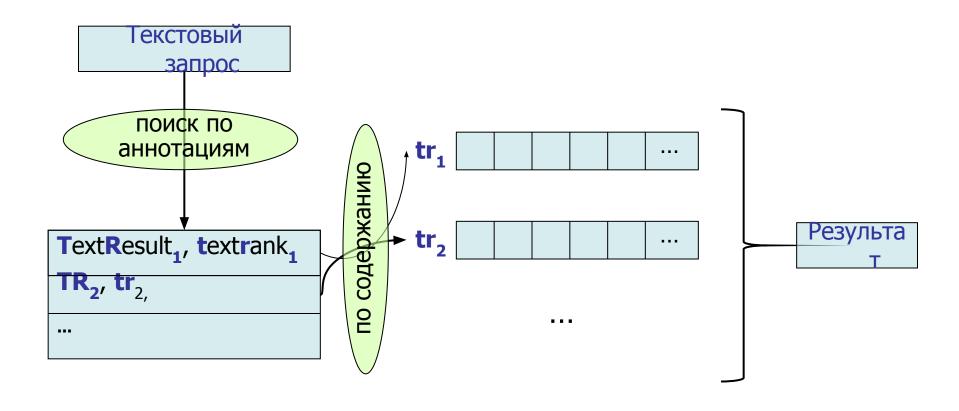
Синтез ранжированных списков с весами

 $\omega_{_{i}}$ – вес i-го списка; $r_{_{k}}^{^{i}}$ - ранг k-го элемента в списке i

$$\omega_1$$
 $(x_1^1, r_1^1), (x_2^1, r_2^1), ..., (x_n^1, r_n^1)$

$$\omega_{2}$$
 $(x_{1}^{2}, r_{1}^{2}), (x_{2}^{2}, r_{2}^{2}), ..., (x_{n}^{2}, r_{n}^{2})$

. . .


$$\omega_{m} (x_{1}^{m}, r_{1}^{m}), (x_{2}^{m}, r_{2}^{m}), ..., (x_{n}^{m}, r_{n}^{m})$$

$$r_k^0 = f(\Omega, R_k)$$
, где Ω — множество весов всех списков, R_k - множество рангов элемента k

Существующие решения:

- CombMax, CombMin, CombSum
- CombAVG
- CombMNZ = CombSUM * number of nonzero similarities
- ProbFuse
- HSC3D

Поиск в частично аннотированной базе

Свойства функции синтеза

- 1) Симметричность
- 2) Монотонность по каждому из аргументов
- 3) Функции для определения ранга объекта Функция ранга ([0..1], [0..1]) N -> [0..1] Функция веса [0..1] N -> [0..1]
- 4) MinMax условие /CombMin, CombMax, CombAVG/:

$$\min\{r_x^{(\alpha_1)}, r_x^{(\alpha_2)}, ..., r_x^{(\alpha_N)}\} \le r_x^{(0)} \le \max\{r_x^{(\alpha_1)}, r_x^{(\alpha_2)}, ..., r_x^{(\alpha_N)}\}$$

5) Дополнительное свойство (аналог HSC3D): условие взвешенной стабилизации элементов с высоким рангом (правило конусов)

Weighted Total with Gravitation Function

Модернизация CombAVG, в качестве веса - стабилизационная (гравитационная) функция:

$$r_{x}^{(0)} = \frac{\sum_{i} g(r_{x}^{(\alpha_{i})}, w^{(\alpha_{i})}) \cdot r_{x}^{(\alpha_{i})}}{\sum_{i} g(r_{x}^{(\alpha_{i})}, w^{(\alpha_{i})})}$$

где

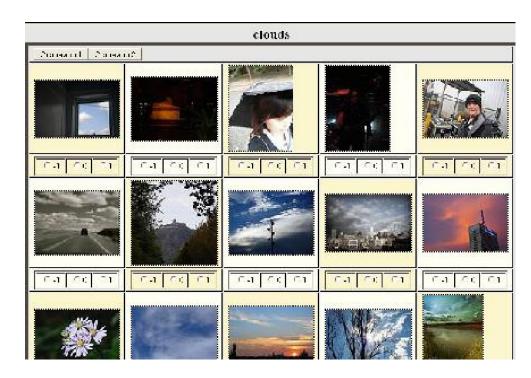
$$g(r_x^{(\alpha_i)}, w^{(\alpha_i)}) = (w^{(\alpha_i)})^2 \cdot \left(r_x^{(\alpha_i)} + \frac{1}{12}\right)^4$$

Эксперименты: метод оценки

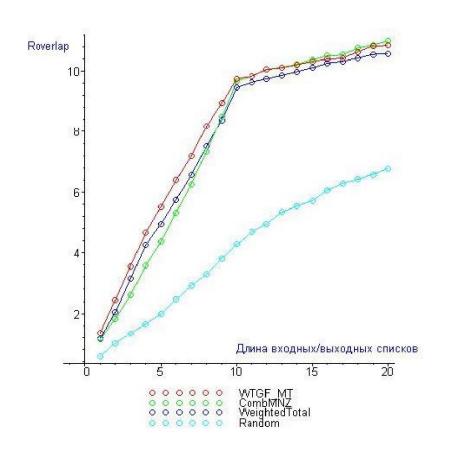
Параметры
$$R_{overlap}$$
, $N_{overlap}$:

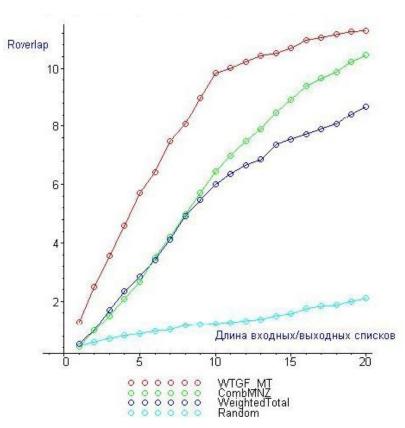
$$R_{overlap}(x) = \frac{M \cdot R^{(0)}(x)}{\sum_{i}^{M} R^{(\alpha_i)}(x)} \qquad N_{overlap}(x) = \frac{M \cdot N^{(0)}(x)}{\sum_{i}^{M} N^{(\alpha_i)}(x)}$$

Lee J. H. Analyses of multiple evidence combination. SIGIR '97: Proceedings of the 20th annual international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA: ACM Press, p. 267-276, 1997.


Описание эксперимента I

Данные:


Коллекция Flickr (~15000)


Методы:

- Random с условиями MinMax
- CombMNZ
- WTGF_MT
- WeightedTotal

Результаты эксперимента I: Roverlap

а) Зависимость Roverlap от размера списка при delta=0.03 для 10 входных списков

6) Зависимость Roverlap от размера списка при delta=0.07 для 10 входных списков

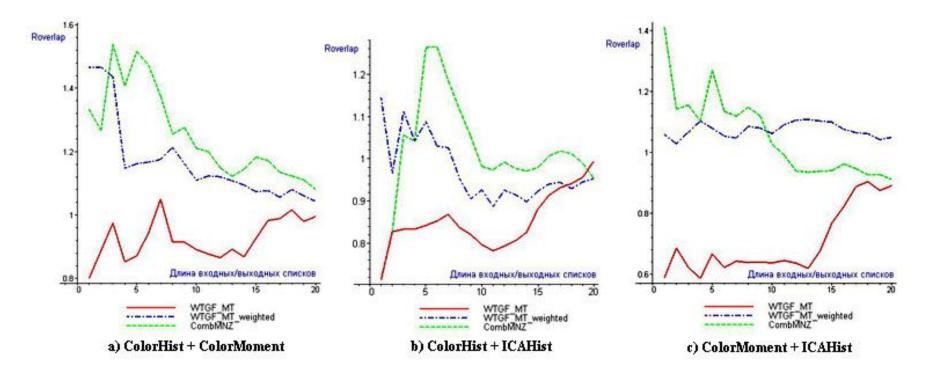
Описание эксперимента II

Данные:

Коллекция Corel Photo Set (285)

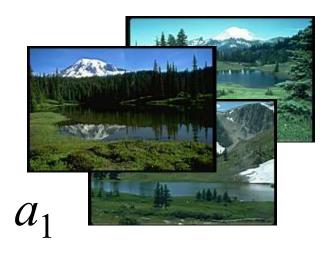
Участники синтеза (попарное смешивание):

- цветовые гистограммы с пространственной информацией (ColorHist)
- статистические признаки цвета (ColorMoment)
- текстурные признаки на основе фильтров ICA (ICAHist)


Методы:

- CombMNZ
- WTGF_MT
- WTGF_MT_weighted

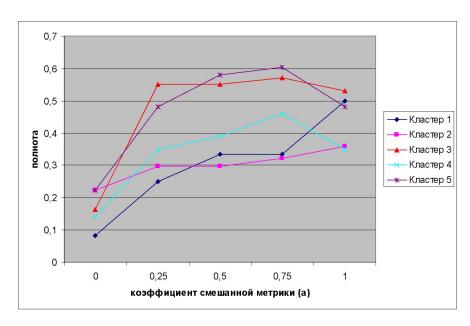
Результаты эксперимента II


Графики зависимости значений Roverlap от размера списков для различных функций синтеза применительно к различным методам поиска по содержанию:

а) ColorHist и ColorMoment; b) ColorHist и ICAHist; c) ColorMoment и ICAHist.

Адаптивный поиск

$$a \cdot C + (1-a) \cdot T$$



Cеминар Московской Секции ACM SIGMOD 29 11 2007

Описание эксперимента III

- Характеристики
 - Цвет статистическое представление
 - Текстура свертки с фильтрами ICA
- По оценкам асессоров изображения разбиты на классы
- Выбор метрики для класса:
 - Каждое изображение запрос для поиска с использованием смешанной метрики
 - Коэффициенты: 0, 0.25, 0.5, 0.75, 1
 - Чем больше суммарная (по всем изображениям класса) полнота, тем лучше метрика

Результаты: зависимость полноты

Кластеры с преобладанием характеристики цвета.

Кластеры со смещением соотношения характеристик в сторону текстуры.

Результаты: кластеры

Описание	Размер	Метрика
Небо	7	$1 \cdot C + 0 \cdot T$
Животные	10	$1 \cdot C + 0 \cdot T$
Облака	8	$0.75 \cdot C + 0.25 \cdot T$
Озера	9	$0.75 \cdot C + 0.25 \cdot T$
Поля, луга	10	$0.75 \cdot C + 0.25 \cdot T$
Листва	5	$0.5 \cdot C + 0.5 \cdot T$
Небоскребы	6	$0.5 \cdot C + 0.5 \cdot T$
Группы людей	5	$0.25 \cdot C + 0.75 \cdot T$

Результаты: примеры

$$1 \cdot C + 0 \cdot T$$

$$0.5 \cdot C + 0.5 \cdot T$$

$$0.25 \cdot C + 0.75 \cdot T$$

Методы синтеза: выводы (1)

- Методы синтеза применимы к задаче поиска изображений и позволяют существенно улучшить результаты поиска.
- WTGF:
 - большое количество источников;
 - невысокая степень перекрытия источников;
 - источники с различными весами.
- CombMNZ:
 - равнозначные источники;
 - высокая степень перекрытия источников.
- Предложенная схема поиска по частично аннотированной базе оправдала себя.

Методы синтеза: выводы (2)

- Возможно выделить классы изображений, для которых большее значение имеет та или иная характеристика.
- Можно ли выделить общие признаки для изображений одного класса?
- Позволит ли адаптивный подход улучшить результат поиска?

Заключение

- Большой выбор различных алгоритмов поиска по каждой из характеристик в отдельности
 - Цвет: гистограммы или статистическая модель?
 - Текстура: фильтры Габора, фильтры ICA
 - Форма: дескрипторы Фурье, инвариантные моменты
- Необходимо комбинировать методы поиска по различным характеристикам
 - Выбор метода синтеза зависит от конкретной задачи (что с чем смешиваем)
 - Важно учитывать веса источников
 - Адаптивный подход?