первый закон термодинамики

Урок изучения нового материала

Цель урока

Обобщить закон превращения и сохранения энергии.

Показать, что ни при каких условиях внутренняя энергия термодинамической системы не может быть превращена в работу без подвода тепла.

План урока

- Первый уровень проверки домашнего задания
- Второй уровень проверки домашнего задания
- Изложение нового материала
- История вопроса
- Модель вечного двигателя
- Работа экспертных групп
- Домашнее задание

Первый уровень: работа с текстом

- ----объясняет свойства тел и явления, происходящие в веществе, исходя из рассмотрения характера движения и взаимодействия частиц – молекул или атомов.
- Раздел физики, в котором изучаются свойства тел без использования представлений о характере движения и взаимодействия частиц, из которых они состоят, называется -----.
- ----- тела складывается из кинетической энергии хаотического теплового движения составляющих его частиц и потенциальной энергии их взаимодействия.
- Совокупность физических тел, изолированную от взаимодействия с другими телами называют ------.

• Вставить:

внутренняя энергия термодинамика изолированная термодинамическая система молекулярно-кинетическая теория.

Проверь себя:

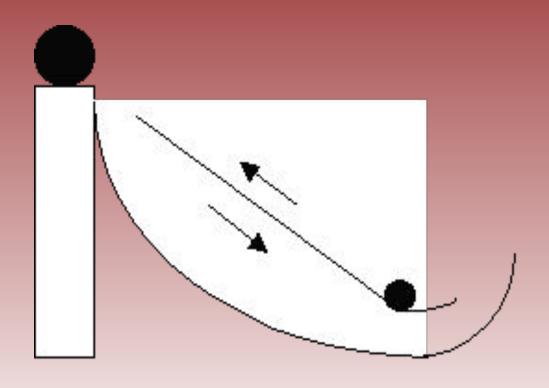

- Молекулярно-кинетическая теория объясняет свойства тел и явления, происходящие в веществе, исходя из рассмотрения характера движения и взаимодействия частиц.
- Раздел физики, в котором изучаются свойства тел без использования представлений о характере движения и взаимодействия частиц, из которых они состоят, называется <u>термодинамикой.</u>
- Внутренняя энергия тела складывается из кинетической энергии хаотического теплового движения составляющих его частиц и потенциальной энергии их взаимодействия.
- Совокупность физических тел, изолированную от взаимодействия с другими телами называют <u>изолированной термодинамической</u> <u>системой.</u>

Вторичное повторение

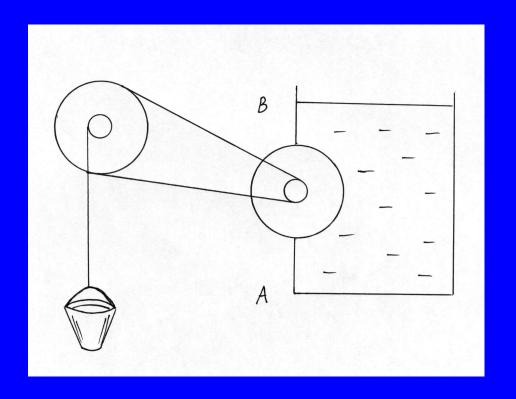
- Как возникла термодинамика?
- Какое состояние термодинамической системы называют равновесным?
- Можно ли вычислить внутреннюю энергию реального газа, жидкости, твердого тела?
- Как вычислить внутреннюю энергию реального газа?
- Какие способы существуют изменения внутренней энергии тела?
- Как можно изменить кинетическую энергию движения молекул?
- Каким способом можно изменить энергию взаимодействия частиц системы между собой?

Проверка домашнего задания

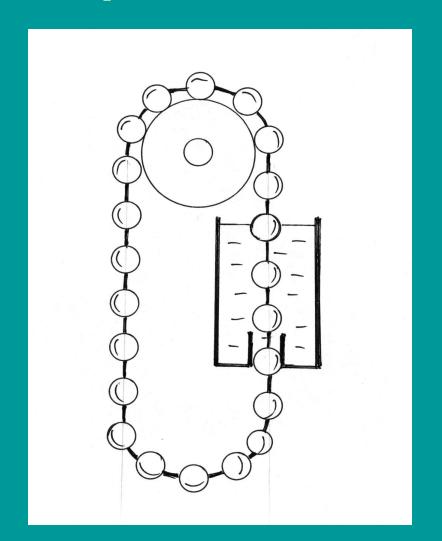
Задача 28.1	Ответ: 1581 Дж
Расчетная формула:	
U=3mRT/2M	

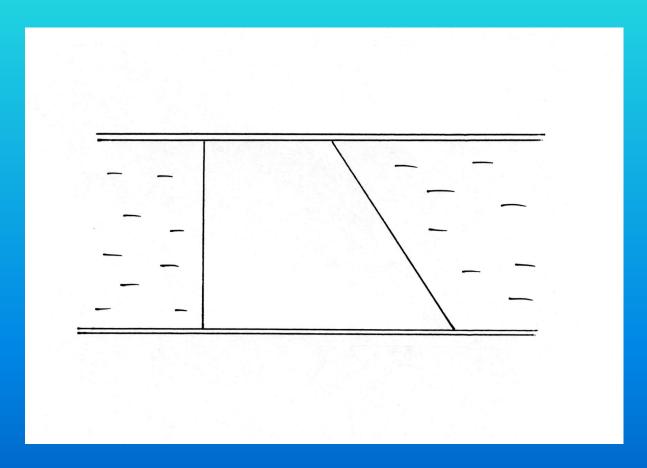

Задача 28.3

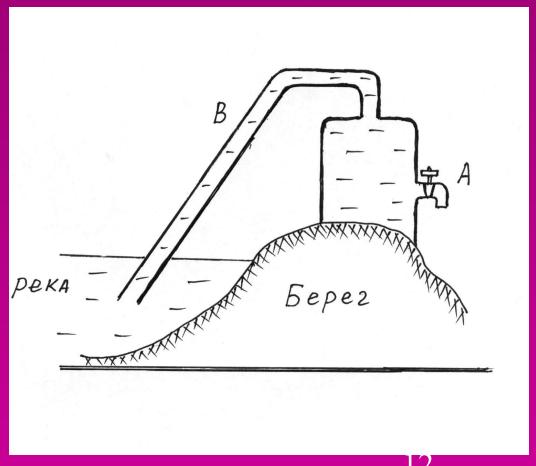
Расчетная формула:


 $\Delta U = 3mR\Delta T/2M$

Ответ: уменьшится на 2490 Дж


Модель вечного двигателя первого рода (лат. perpetuum mobile)


Простой проект вечного двигателя


Вечный двигатель Леонарда

Вечный гидростатический двигатель

Вечный насос

Домашнее задание

§29, задачи 29.1-29.3