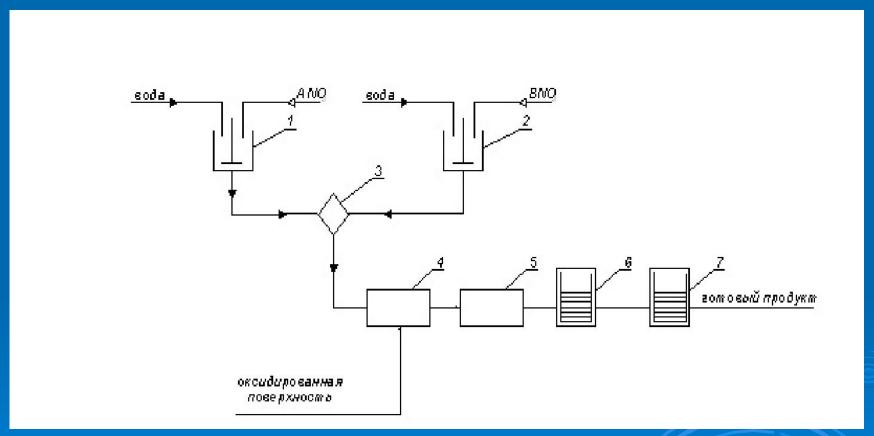
Снижение токсичности выхлопных газов процессов окисления углеводородного топлива.

Кафедра XTHB, Катализа и Экологии НТУ "ХПИ"

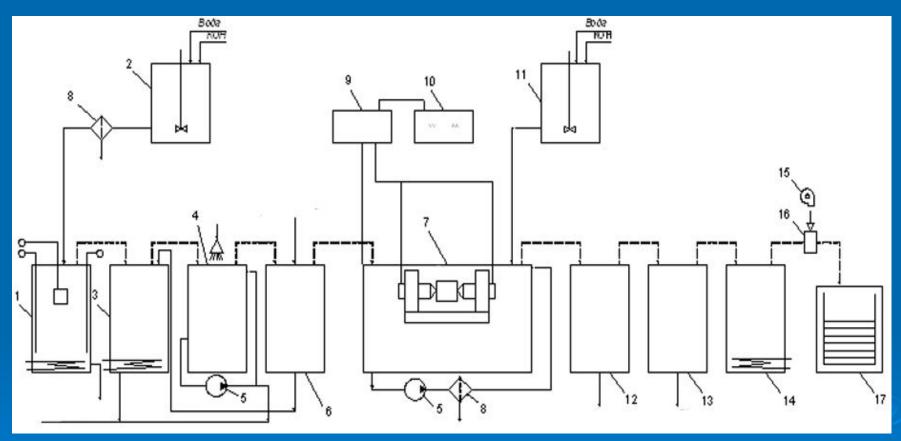
Яковишин В.А.;

Савенков А.С., докт. техн. наук.


Состав отработанных газов ДВС

Компонент	Содержание в выхлог			
	Дизельный двигатель	Бензиновый двигатель	Вредность	
N_2	74 – 78	74 – 77	Безвредный	
O_2	2,0-20,0	0,3 – 10,0	Безвредный	
$\mathrm{H_{2}O}$	0,5 – 11,0	3,0-5,5	Безвредный	
CO_2	1,0-16,0	5,0 – 12,0	парниковый газ	
CO	0,005 - 0,4	0,5-12,0	Токсичный	
NO _x	0,004 - 0,5	0,01 - 0,8	Токсичные	
C_nH_m	0,005 - 0,3	0,2-3,0	Токсичные	
Альдегиды	0,001 - 0,009	0 - 0,2	Токсичные	
Сажа	0,01 — 1,1 г/м3	0 – 0,04 г/м3	Токсичная	
Бенз-[а]- пирен	0,05 – 1	0 - 20 мкг/м 3	канцероген	

Выбросы токсичных компонентов с отходящими газами теплоэнергетических установок


	Концентрация, г/м ³				
Компонент	Каменный уголь (S=1,7 %)	Мазут (S=1,7 %)	Природный газ		
SO_x (в пересчёте на SO_2)	3,0	4,0	-		
NO_x (в пересчёте на NO_2)	0,2-1,5	0,15-1,5	0,1-1,8		
Зола, пыль	0,06 - 1,0	0,07-0,35	до 0,07		
CO	0,02-2,5	0,05-1,2	0,05-0,6		
Альдегиды (в пересчёте на ${\rm CH}_2$)	0,0007 - 0,007	0,0007 - 0,007	0,04 - 0,4		
Сажа (С)	0,035 - 0,6	0,07 - 0,35	0,0075 - 0,07		
Канцерогенные вещества (в пересчёте на $C_{20}H_{12}$)	$(8-15)\cdot 10^{-4}$	$(2-4)\cdot 10^{-4}$	$(0-1)\cdot 10^{-4}$		

Принципиальная схема нанесения каталитического покрытия

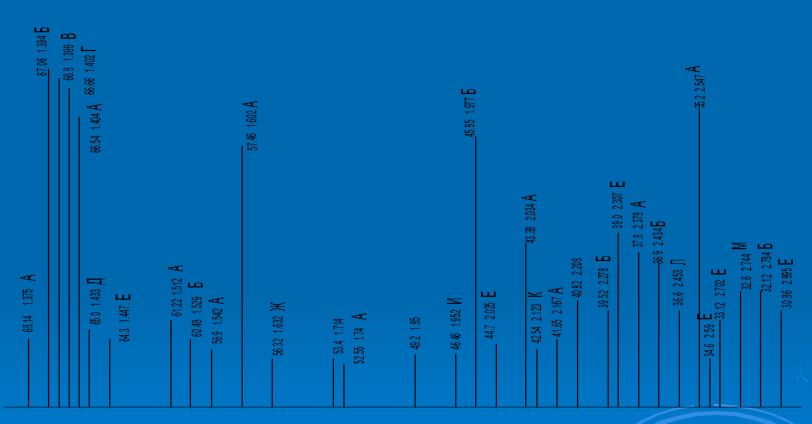
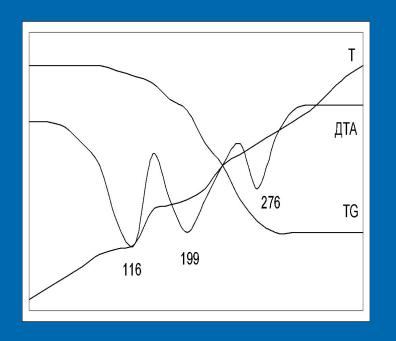
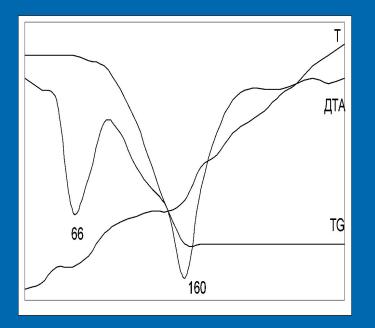
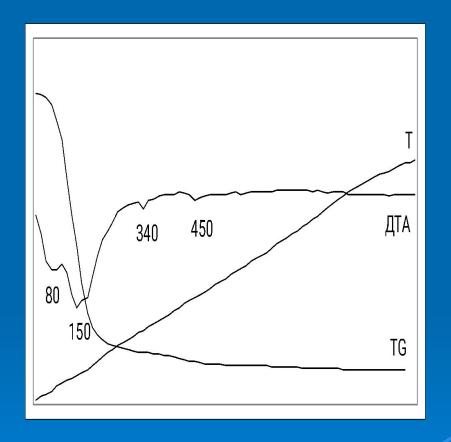

- 1,2 приготовление растворов солей активных компонентов; 3 смешение растворов,
- 4 пропитка оксидированной поверхности; 5 провяливание; 6 сушка; 7 прокалка.

Схема получения оксидного покрытия


1 — ванна обезжиривания; 2 — ёмкость приготовления раствора обезжиривания; 3 — ванна горячей промывки; 4 — ванна холодной промывки; 5 — циркуляционный насос; 6 — ванна финишной промывки; 7 — ванна анодирования; 8 — фильтр; 9 — блок питания; 10 — блок контроля; 11 — ёмкость для приготовления электролита; 12 — ванна промывки; 13 — ванна финишной промывки; 14 — ванна наполнения; 15 — фен; 16 — сушка; 17 — термошкаф.

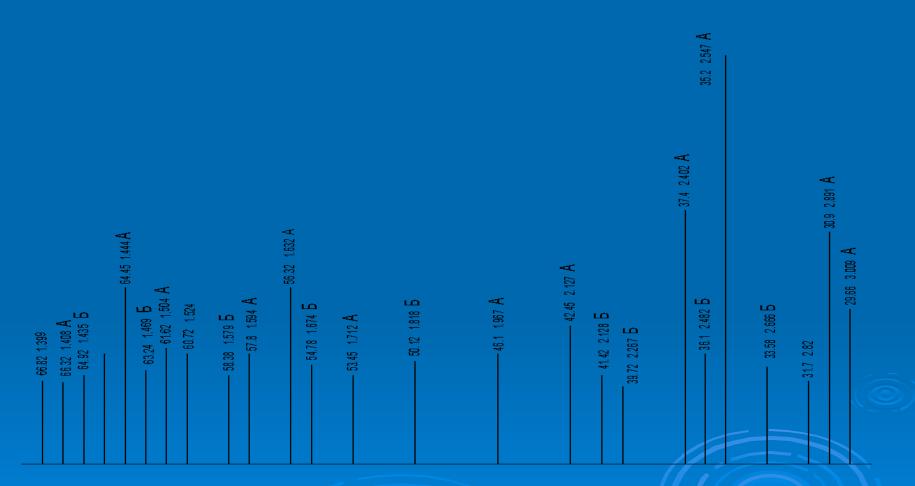

Результаты рентгенофазового анализа носителя

 $\begin{array}{c} A-\gamma-Al_{2}O_{3};\ B-\alpha-Al_{2}O_{3};\ B-Al_{2,144}O_{3,2};\ \Gamma-\beta-Al_{2}O_{3};\ \mathcal{I}-Al_{2}O;\\ E-\theta-Al_{2}O_{3};\ \mathcal{K}-AlO;\ \mathcal{H}-\delta-Al_{2}O_{3};\ \mathcal{K}-dzeta\ Al_{2}O_{3};\ \mathcal{I}-E-Al_{2}O_{3};\\ M-delta\ Al_{2}O_{3} \end{array}$

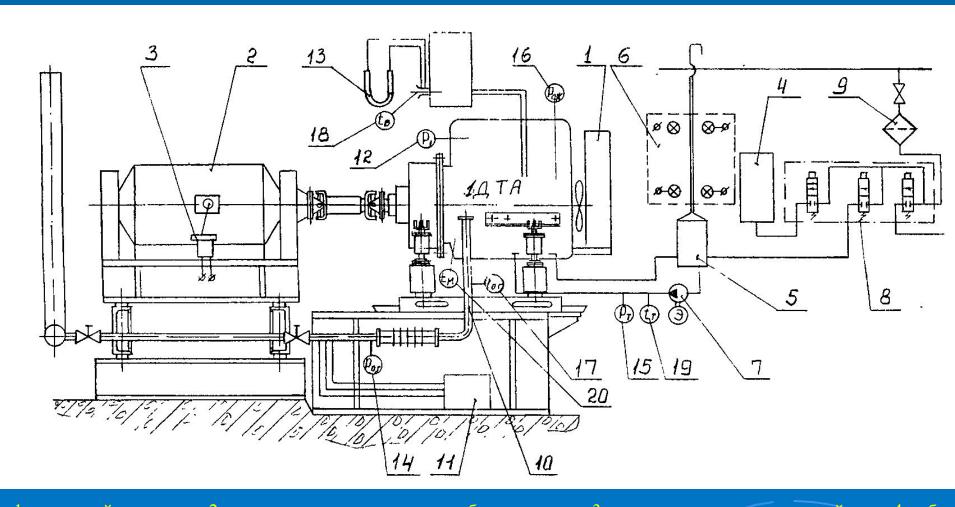

Термограммы разложения

a - $Cu(NO_3)_2 \cdot 3H_2O$; $6 - Cr(NO_3)_3 \cdot 9H_2O$

Термограмма термического разложения смеси нитратов активных компонентов



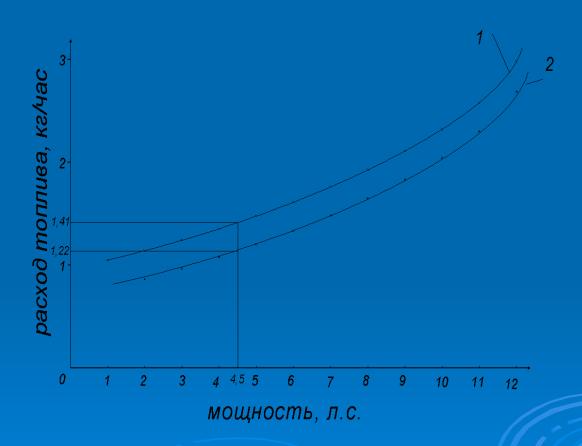
Данные рентгенофазового анализа продуктов разложения смеси солей при 300 - 310°C


A - CuCrO₄

Данные рентгенофазового анализа продуктов разложения смеси солей при температуре выше 450°C

 $A - CuCr_2O_4;$ $B - Cr_2O_3$

Схема испытательного стенда



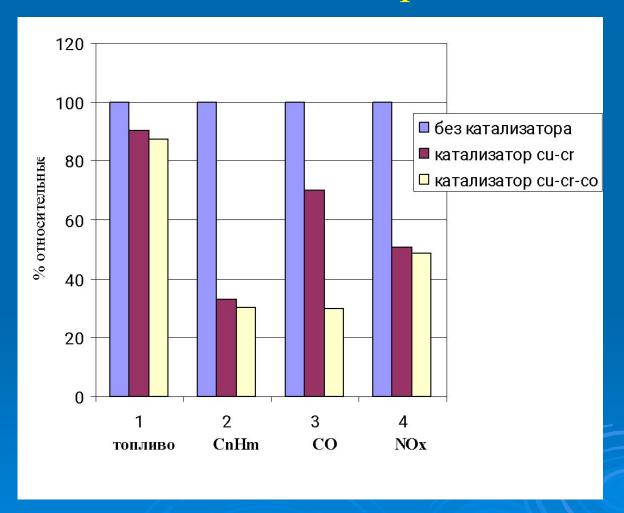
1 - водяной радиатор; 2 - машина постоянного тока балансировки; 3 - весоизмерительное устройство; 4 - бак топливный расходный; 5 — бак топливный мерный; 6 — измеритель расхода топлива; 7 - топливоподкачивающий насос; 8 - блок электромагнитных клапанов; 9 - фильтр топливный; 10 - система отвода выхлопных газов; 11 - стойка с приборами газового анализатора; 12 - давление масла в системе смазки; 13 - перепад давления на мерном сопле; 14 — давление отработавших газов; 15 - давление топлива на входе в двигатель; 16 - давление на входе охлаждающей жидкости; 17 - температура выхлопных газов; 18 - температура засасывающего воздуха; 19 - температура топлива на входе в двигатель; 20 - температура масла в картере.

Нагрузочные характеристики и расход топлива

Частота вращения коленчатого вала, n, мин ⁻¹	Мощность, N _e , л.с.	Р _e , МПа	Расход топлива, г/час.
2000	3,1	0,0060,4	570
2500	3,05	0,140,425	565
3000	4,05	0,190,41	1000
3500	4,35	0,2140,445	1200

Зависимость расхода топлива от мощности двигателя

1 – серийный поршень; 2 – поршень с каталитическим покрытием


Зависимость содержания NO_x в отходящих газах, от типа поршня и режима работы двигателя

Режим	Поршень серийной сборки, ppm, NO _x	Поршень с корундовым покрытием, ppm, NO _x	Поршень с Корундовым покрытием и катализатором, ppm, NO _x	
P1	830	465	245	
P2	670	596	400	
P3	870	600	400	
P4	740	660	460	
P5	700	540	510	
P6	720	560	490	
P7	1520	600	490	
P8	1400	720	440	

Режимы работы при проведении исследований по определению выбросов вредных веществ

Номер режима Номер режима Номер коленчатого вала, <i>n</i> , мин1	1 tp J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Коэффициент весомости режима K_B при рабочем объеме цилиндров, см ³						
	$\%$ OT $M_{ m kmax}$	До 50	51 - 100	101 - 200	201 - 300	301 - 400	Более 400	
1	n _{xxmin}	0	0,03	0,03	0,03	0,03	0,03	0,03
2	n _{HOM}	100	0,30	0,27	0,23	0,19	0,15	0,10
3	0,85 n _{HOM}	100	0,25	0,22	0,18	0,16	0,13	0,10
4	0,85 n _{HOM}	75	0,10	0,10	0,10	0,10	0,10	0,10
5	0,85 n _{HOM}	50	0,07	0,07	0,07	0,08	0,09	0,10
6	0,85 n _{HOM}	25		_	0,02	0,03	0,04_	0,05
7	0,85 n _{HOM}	0		0,01	0,02	0,02	0,02	0,02
8	0,85 n _{HOM}	100	0,10	0,12	0,14	0,16	0,18	0,20

Диаграмма результатов испытаний катализатора

Предлагаемая технология может быть использована:

- а) на стационарных и на автотранспортных двигателях внутреннего сгорания работающих на дизельном топливе, бензине, биотопливе;
- б) в процессах сжигания газообразных или жидких углеводородных топлив в различных теплоэнергетических агрегатах;
- □ в) для обезвреживания выхлопных газов содержащих органические соединения.

Использование катализатора позволяет не только повысить экологические показатели процесса глубокого окисления углеводородов, но и снизить расход топлива. Катализатор не содержит благородных металлов, устойчив к условиям процесса, прост в получении.

Ищем партнеров! savenkov@kpi.kharkov.ua.