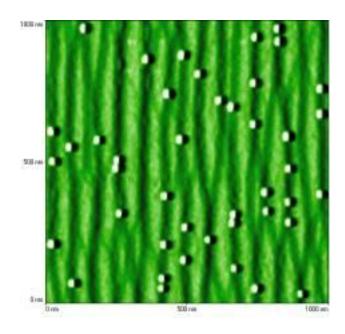

Нижегородский государственный университет им. Н.И. Лобачевского

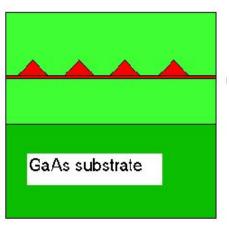
Научно-исследовательский физикотехнический институт ННГУ

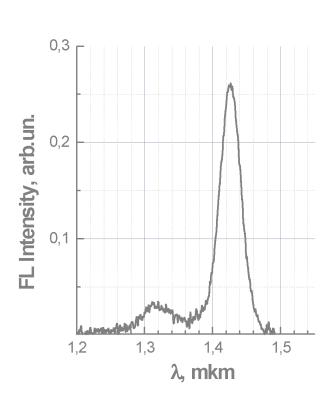
Физический факультет ННГУ

Структуры с квантовыми ямами InGaAs/GaAs/InGaP и лазерные диоды

Руководитель проекта: к.ф.-м.н. Б.Н. Звонков

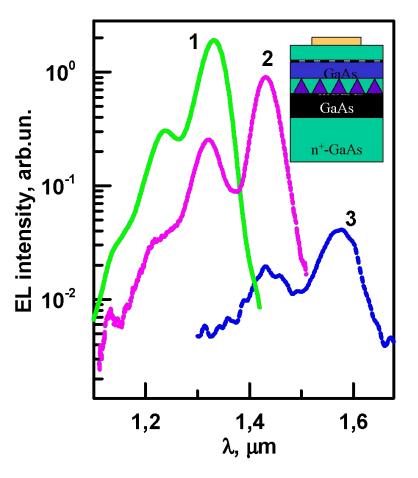

Основные результаты:


- Полупроводниковый лазер на длине волны 0,96 0,98 мкм, излучающий через подложку
- Полупроводниковые лазеры с широкими туннельно связанными волноводами
- Двухполосные лазеры на квантовых ямах InGaAs/GaAs/InGaP


Параметры п/п лазеров

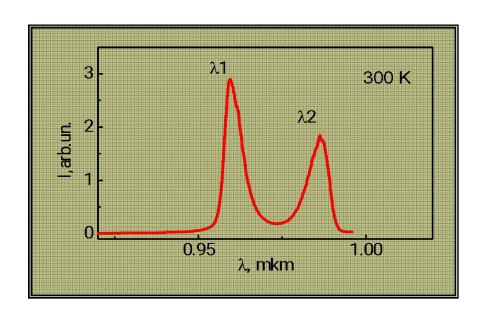
Режимы	Многомодовый, непрерывный
Максим. выходная мощность	2 Вт
Пороговый ток	0,6 A
Апертура излучения	100×1 мкм
Расхождение	10°x50°
Длина волны	940÷1000 нм
Ширина спектра	2÷4 нм

Лазерные диоды на квантовых точках InAs/GaAs



Лазерные диоды, излучающие в диапазоне 1,3-1,55 мкм

Фото - диоды, сформированные на квантово-размерной гетероструктуре GaAs/InGaAs/InAs-QD/GaAs



Основные результаты: фото-диоды на диоде Шоттки, сформированном на квантово-размерной гетероструктуре GaAs/InGaAs/InAs-QD/GaAs, работающие при комнатной температуре; длина волны излучения может перестраиваться в некоторых пределах путем изменения толщины и состава покровного слоя GaAs/InGaAs

Спектры ЭЛ (300 К) диодов на различных гетероструктурах с квантовыми точками: 1 – со слоем изолированных квантовых точек; 2, 3 – с квантовыми точками, покрытыми покровным слоем InGaAs КЯ. Толщины слоя GaAs: 1, 2 - 30 нм; 3 - 10 нм.

Двухчастотный лазер на основе гетероструктур InGaP/GaAs/InGaAs

с квантовыми ямами

лазера, соответствующей дальней ИК области длин волн (30-80 мкм)

генерации разностной частоты

Достоинство: возможность

Спектр двух полос генерации лазера

Публикации:

Труды конференции «Нанофотоника». 2003. Т.2. С.315-317.

Оптическое перемешивание в структуре лазерных диодов GaAs/InGaAs/InGaP: новая схема для генерации суммарных и разностных частот

Основные результаты: впервые продемонстрирована возможность непрерывной генерации суммарных и разностных частот в структуре состыкованных лазерных диодов GaAs/InGaAs/InGaP

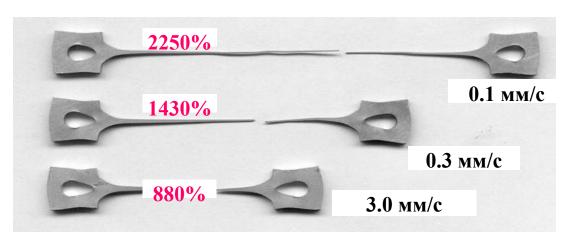
Основные применения лазерных диодов

ОБЛАСТИ ПРИМЕНЕНИЯ

- Оптические системы связи
- Накачка твёрдотельных лазеров
- Лазерная локация
- Экологический мониторинг
- Медицина
- Охранная сигнализация
- Защита и идентификация продукции и изделий

Применение в качестве защиты

- Защита и идентификация изделий предприятий, терпящих убытки за счет реализации на рынке аналогичной контрафактной продукции;
- Защита и идентификация материальных ценностей, находящихся в государственной и частной собственности;
- Защита документов и ценных бумаг от подделки;
- Защита произведений искусства;



Высокоскоростная сверхпластичность объемных нанокристаллических алюминиевых сплавов

Руководитель проекта: профессор д.ф.-м.н. Чувильдеев В.Н.

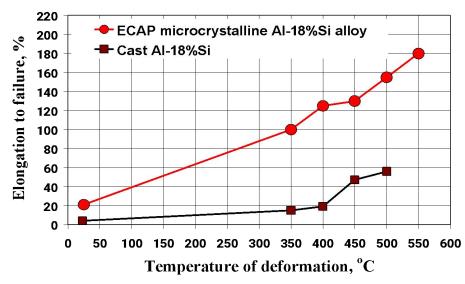
Основные результаты: получены рекордные характеристики высокоскоростной сверхпластичности: удлинение до разрушения составляет 880% при скорости деформации 1 с⁻¹ (100 % в секунду) для нанокристаллического алюминиевого сплава Al-4.5%Mg-0.22%Sc-0.15%Zr.

Работы выполнены при поддержке Международного научно- технического центра — проект #1413 "Aluminum Composite Alloys with High-Strain-Rate Superplasticity Effect" в сотрудничестве с Ливерморской национальной лабораторией (США)

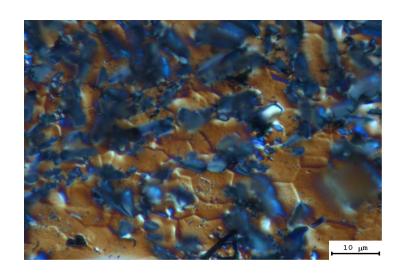
Образцы после высокоскоростной сверхпластической деформации при T=450 °C

Сверхиласти чиоств напокристалли ческих магиисьых силавов

Основные результаты:


- 1. Разработаны и получены новые сверхпластичные нанокристаллические магниевые сплавы по технологии равноканального углового прессования.
- 2. Получены рекордные сверхпластические характеристики при низких температурах: удлинение до разрушения составляет 810 % and 570 % при температурах 250-300 °C в нанокристаллических магниевых сплавах МА14 и AZ91, соответственно.

• Chuvil'deev V.N., Nieh T.G., Gryaznov M.Yu., Sysoev A.N., Kopylov V.I. Low-temperature superplasticity and internal friction in microcrystalline magnesium alloys processed by ECAP. Scripta Materialia, 2004, vol.50, No.6, pp.861-865.
• Chuvil'deev V.N., Nieh T.G., Gryaznov M.Yu., Sysoev A.N., Kopylov V.I. Superplasticity and internal friction in microcrystalline AZ91 and ZK60 magnesium alloys processed by equal-channel angular pressing. Journal of Alloys and Compounds, 2004, Vol. 378, №1-2, pp 253-257.


Нанокристаллические поршневые силумины

Основные результаты:

- 1. Разработаны и получены новые сверхпластичные нанокристаллические силумины по технологии равноканального углового прессования.
- 2. Получены рекордные характеристики пластичности (без потери прочности) для нанокристаллического сплава Al–18%Si: удлинение до разрушения составляет порядка 200%, что в 4 раза выше, чем пластичность аналогичного литого сплава.

Пластические характеристики литого и нанокристаллического сплава AI–18%Si

Ультрамелкозеренная структура нанокристаллического сплава Al–18%Si

Применение

МАТЕРИАЛЫ	ОБЛАСТЬ ПРИМЕНЕНИЯ	ПОТЕНЦИАЛЬНЫЕ ЗАКАЗЧИКИ
Высокопрочные магниевые сплавы с эффектом сверхпластичности	Детали кузова автомобиля Элементы двигателя Корпуса электронных приборов: корпуса ноутбуков, сотовых телефонов и пр.	Предприятия авиакосмического комплекса Предприятия автомобильной промышленности Предприятия электронной промышленности
Высокопрочные алюминиевые сплавы с эффектом высокоскоростной сверхпластичности	Элементы фюзеляжа, обтекатели Элементы корпуса и переборки	Предприятия авиакосмического комплекса Судостроительные предприятия
Высокопрочные титановые сплавы	Крепеж	Предприятия авиакосмического комплекса
Поршневые сплавы с уникальными механическими свойствами	Высокопрочные и высокоресурсные поршни двигателей внутреннего сгорания	Предприятия автомобильной промышленности Моторостроительные предприятия