

«ПЄИПЄ» ОАЕ

презентация компании и результатов разработки КНС Ф100 и 150 мм

Чумак Вячеслав Данилович главный конструктор структур КНС

февраль 2010

КРАТКО О КОМПАНИИ

ЗАО «Эпиэл» - российский лидер в производстве кремниевых эпитаксиальных структур и партнер ведущих производителей микроэлектронных приборов России и СНГ

ГОД ОСНОВАНИЯ

1998

РАСПОЛОЖЕНИЕ

Зеленоград, Москва, РФ

ПРОДУКЦИЯ

Кремниевые эпитаксиальные структуры диаметром до 150 мм (в 2010г. – 200мм)

Эпиструктуры Кремний на Сапфире диаметром 100 мм (в 2010г. – 150мм)

Особо чистые газы (Водород, Кислород)

Научные исследования и разработки в сфере эпитаксиальных технологий

ПЕРСОНАЛ

Высококлассные специалисты в области эпитаксии с многолетним опытом работы

НАШ ПЕРСОНАЛ

- В компании работает 110 человек
 - 80% сотрудников непосредственно участвуют в процессе производства и разработке новых продуктов

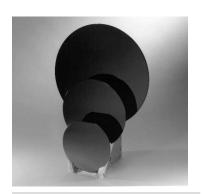
опыт наших ведущих специалистов в эпитаксии – более 30 лет

в нашей исследовательской лаборатории 10 инженеров-исследователей и научных сотрудников работают над совершенствованием эпитаксиальных технологий,

среди них - 7 обладателей ученых степеней

ПРОДУКЦИЯ

		запуск в 2010 - СБИС спец			ц. Назначения (150мм)		
Структуры КНС				СБИС спец. назна	ачения (100мм)		
(применение)					нзомодули 3 и 100мм)		
				запуск в 2010 -	ИС 130-180 нм (200мм)		
		Ультра-быстрые диоды					
			ДМОП				
Кремниевые		Силовые транзи	исторы				
эпиструктуры (применение)		Диоды Шоттки					
,		IGBT					
Мало-сигнальные транзисторы							
	Диоды						
	ИС						
1998	2000	2002 2	004	2006 2008	2010		
Система менеджмента качества		ISO 9002:1994	ISO	9001:2000	ISO 9001:2008 (с конца 2009)		


ЭПИЭЛ В ОТРАСЛИ

ЗАО «ЭПИЭЛ» - партнер ведущих производителей микроприборов в России и СНГ:

ОАО «НИИМЭ и Микрон», Москва, РФ
ОАО «Ангстрем», Москва, РФ
ЗАО «ВЗПП Микрон», Воронеж, РФ
НПО «Интеграл», Минск, Беларусь
ФГУП «ГЗ Пульсар», Москва, РФ

Кремниевые пластины

Эпитаксиальные структуры и эписервис

Полупроводниковые приборы

Потребительская, Промышленная и Военная электроника

ПРОИЗВОДСТВЕННЫЕ МОЩНОСТИ

А РИНИП

Импортное оборудование

Эпитаксиальные структуры мирового уровня диаметром 100, 125 и 150 мм

PE2061 S

PE2061

PE2061

PE2061 S

PE2061 S

PE2061 S

линия Б

Отечественное модернизированное оборудование

Эпитаксиальные структуры диаметром 76 и 100 мм

		Эпиквар	Эпиквар
	Эпиквар	Эпиквар	Эпиквар
	Эпиквар	Эпиквар	Эпиквар
Эпиквар	Эпиквар	Эпиквар	Эпиквар
Эпиквар	Эпиквар	Эпиквар	Эпиквар
Эпиквар	Эпиквар	Эпиквар	Эпиквар

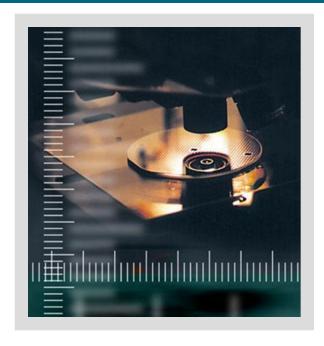
1998

2001

2004

2007

ПРОИЗВОДСТВЕННЫЕ МОЩНОСТИ



ПАРК ИЗМЕРИТЕЛЬНОГО ОБОРУДОВАНИЯ

- 4-х зондовый измеритель (RS30 Omni Map, ResMap178)
- Измеритель сопротивления растекания (SSM130)
- Измеритель пробивного напряжения эпислоя
- CV-измеритель (SSM 495)
- Фурье-спектральный измеритель (ФС1201П)
- Установка контроля качества поверхности (Reflex300, Reflex375)
- Микроскопия («Jenatech», «Ergolux», «Latimet»)

ЗАО «ЭПИЭЛ» имеет собственную исследовательскую лабораторию проведения исследований и разработок в сфере эпитаксиальных технологий

ПАРАМЕТРЫ ЭПИТАКСИАЛЬНЫХ СТРУКТУР

Структуры Кремний на Кремнии

Диаметр подложки, мм	76, 100, 125, 150		
Ориентация	(111), (100)		
Легирующая примесь	Сурьма, Бор, Мышьяк		
Толщина эпислоя, микрон	3,0 – 150		
Легирующая примесь эпислоя	Фосфор, Бор, Мышьяк		
Удельное сопротивление, Ω*cm n- тип р-тип	0,01 - 150 0,1 - 50		
Типы однослойных структур	n-n ⁺ , p-n ⁺ , p-p ⁺ , n-p ⁺		
Типы двухслойных структур	n ₁ -n ₂ -n ⁺ , n ₁ -n ₂ -p ⁺		

■ Параметры структур соответствуют требованиям стандартов SEMI

ПАРАМЕТРЫ ЭПИТАКСИАЛЬНЫХ СТРУКТУР

Структуры Кремний на Сапфире

Диаметр подложки, мм	76, 100, 150		
Ориентация	(1 012) ± 1°		
Легирующая примесь	Фосфор, Бор		
Толщина ГЭС кремния, мкм	0,3 - 2,0		
Удельное сопротивление, Ω*cm п-тип р-тип	Более 30; 5-30; 2,5-10 1,0 - 0,001		

Прочие параметры – в соответствии с ТУ 6365-001-18624190-09 и ТУ 6365-002-18624190-09

* - в 2009 году мы освоили производство структур КНС диаметром 100 и 150 мм с толщиной кремниевого слоя 0,3 мкм

КАЧЕСТВО – НАШ ПРИОРИТЕТ №1

КАЧЕСТВО ПРОДУКЦИИ

- Параметры эпитаксиальных структур соответствуют международным стандартам SEMI для дискретных приборов
- Методы измерения и контроля полностью соответствуют стандартам ASTM
- Система менеджмента качества сертифицирована на соответствие стандарту ISO 9001:2008

РАБОТА С ЗАКАЗЧИКОМ

- Индивидуальный подход и тесное взаимодействие с Заказчиком по вопросам качества продукции
- Гарантированное выполнение согласованных с заказчиком требований

НАШ СЕРТИФИКАТ ISO 9001:2008

ЗОНА ЗАГРУЗКИ ПЛАСТИН

Чистое производственное помещение

ЗОНА ОБСЛУЖИВАНИЯ ОБОРУДОВАНИЯ

Силовые генераторы

Установки PE2061S - вид из зоны обслуживания

СИСТЕМЫ ПОДАЧИ И РАСПРЕДЕЛЕНИЯ ХЛОРИДОВ

Газовые панели

Испарители

Панели управления

СИСТЕМА ПОДАЧИ И РАСПРЕДЕЛЕНИЯ НСІ & РНЗ

Автоматический шкаф для HCI

Газовый шкаф и панель для РН3

СИСТЕМА ДООЧИСТКИ ВОДОРОДА

Панель управления

Очистка водорода Точка росы ≤ минус 100°C

ОКП 63 6500 Гр от Группа Э 10 СОГЛАСОВАНО **УТВЕРЖДАЮ** Генеральный директор Заместитель начальника ФГУ «22 ЦНИИИ Минобороны России» ЗАО «Эпиэл» по научной работе В. А. Телец В. Н. Стаценко 02 2009 г. ТУ 11-09 СТРУКТУРЫ ГЕТЕРОЭПИТАКСИАЛЬНЫЕ КРЕМНИЯ НА САПФИРЕ для РАДИАЦИОННО-СТОЙКИХ СБИС ТЕХНИЧЕСКИЕ УСЛОВИЯ ТУ 6365-001-18624190-09 ЕКФС.035.001 ТУ (Введены впервые) Срок введения с _____ 2009 г. СОГЛАСОВАНО СОГЛАСОВАНО СОГЛАСОВАНО Зам. ген. директора Главный конструктор Начальник 4400 ВП «сипЄ» ОАЕ МО РФ ОАО «Ангстрем» П.Р. Машевич Ю.И. Иванов В.Д. Чумак «26» **6**/ 2009 г. «21» ol 2009 г. Начальник 4399 ВП МО РФ В.Г Сницар «23» ОЛ 2009 г.

Подп. и дата

Инв. № дубл.

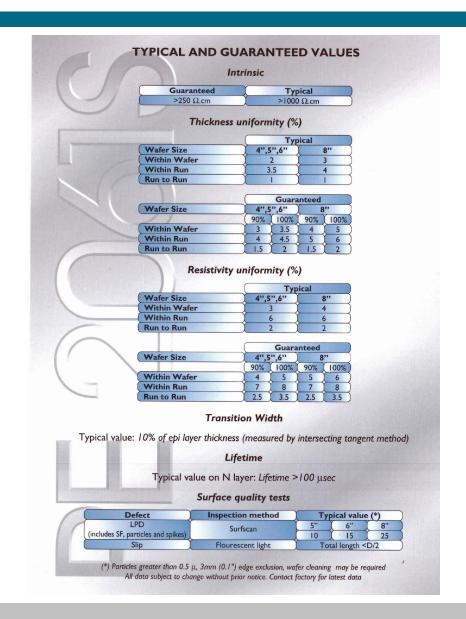
Взам.инв.№

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ОКР «ФИЕСТА»

ГЕОМЕТРИЯ ПЛАСТИН

	Диаметр структуры				
Наименование параметра	100	ММ	150 мм		
параметра	Норма ТУ	Факт.знач.	Норма ТУ	Факт.знач.	
Δ D , MKM	100 ± 0,3	100 ± 0,2	150 ± 0,5	150 ± 0,3	
BOW, мкм	≤ 40	≤ 20	≤ 60	≤ 30	
TIR, мкм	≤ 8	≤ 6	≤ 15	≤ 8	
TTV, мкм	≤ 15	≤ 10	≤ 25	≤ 15	

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ОКР «ФИЕСТА»



ЭПИТАКСИАЛЬНЫЙ СЛОЙ

	КНС Ф100 мм				КНС Ф150 мм	
Наименовани	KHC-0,6		KHC-0,3		KHC-0,3	
е параметра	Факт	Норма ТУ	Факт	Норма ТУ	Факт	Норма ТУ
∆d (ц) ном., мкм(%)	0,018 (3,0)	0,06 (10)	0,01 (3,0)	0,03 (10)	0,015 (5,0)	0,03 (10)
∆d (пл.)ном, мкм(%)	0,031 (5,17)	0,09 (15)	0,0095 (3,2)	0,05 (16,67)	0,016 (5,3)	0,05 (16,67)
Ј уф., отн.ед	≤ 0,5	≤ 0,75	≤ 0,6	≤ 1,0	≤ 0,5	≤ 0,75
Nd 1/кв.см	≤ 6	≤ 10	≤ 3	≤ 3	≤ 1,0	≤ 3
TIR, мкм	≤ 8	≤ 8	≤ 6	≤ 8	≤ 10	≤ 15

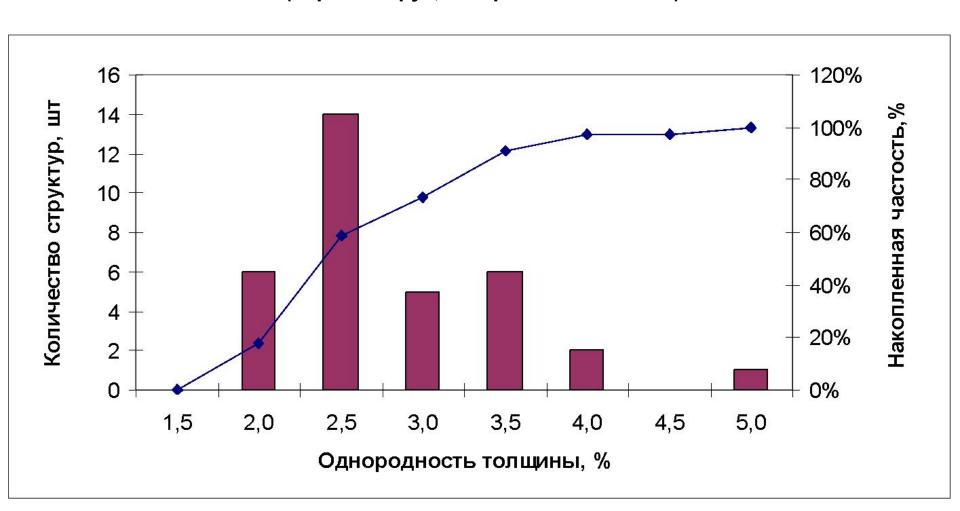
ПАРАМЕТРЫ ЭС, ВЫПУСКАЕМЫХ НА УСТАНОВКЕ РЕ 2061S

ОДНОРОДНОСТЬ ТОЛЩИНЫ ЭС, ВЫПУСКАЕМЫХ НА УСТАНОВКЕ РЕ 2061S

		uniformity (%) Typical			
Wafer Size	4",5	4",5",6" 8"			
Within Wafer		2		3	
Within Run	3	3.5		4	
Run to Run					
		Guara	nteed		
Wafer Size	4",5	4",5",6"		8"	
	90%	100%	90%	100%	
Within Wafer	3	3.5	4	5	
Within Run	4	4.5	5	6	
ACTUAL PROPERTY OF THE PROPERT					

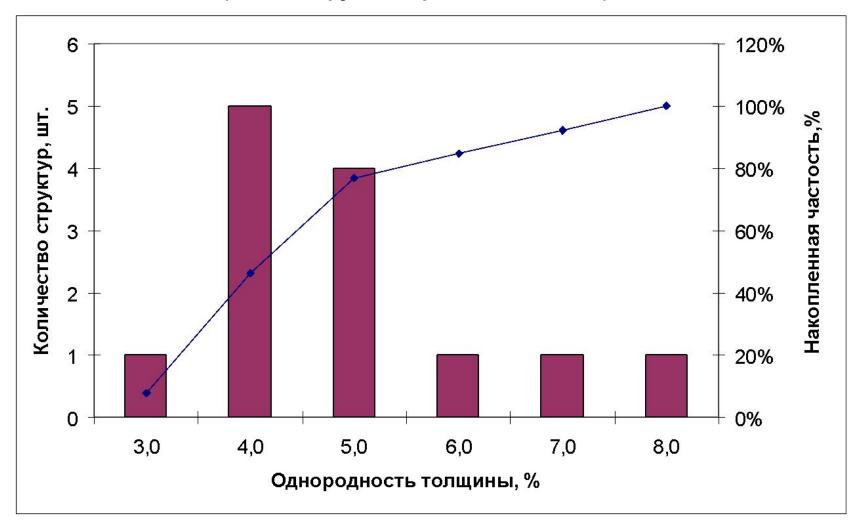
ИЗМЕНЕНИЕ ПЛАНА КОНТРОЛЯ

Изменение толщины ГЭС по площади структур КНС Ф150 мм при изменении плана контроля


 $(9 \rightarrow 5$ точек контроля)

ЗАО «Эпиэл»	Фирма SVM
2.35% → 2.18%	1.46% → 1.3%
3.93% → 3.93%	1.47% → 1.47%
1.53% → 0.86%	$\mathbf{2.3\%} ightarrow \mathbf{2.0\%}$

ОДНОРОДНОСТЬ ТОЛЩИНЫ ГЭС КНС Ф150 ММ


Распределение толщины слоя кремния по площади пластины (верхний ярус, контроль по 9 точкам)

ОДНОРОДНОСТЬ ТОЛЩИНЫ ГЭС КНС Ф150 ММ

Распределение толщины слоя кремния по площади пластины (нижний ярус, контроль по 9 точкам)

НАПРАВЛЕНИЕ ДАЛЬНЕЙШИХ РАБОТ

- Повышение воспроизводимости и однородности параметров кремниевых слоев в структурах КНС Ф150 мм.
- Разработка промышленного метода контроля остаточных загрязнений (частиц) на пластинах сапфира и структурах КНС (по типу Surfscan для кремния).
- Разработка метода контроля и технологии удаления статического заряда на пластинах сапфира и структурах КНС.
- Разработка установки контроля границы раздела «кремний сапфир» методом фото-ЭДС с применением картографирования поверхности.
- Разработка структур КНС Ф150 мм с улучшенным кристаллическим совершенством границы раздела «кремний сапфир».
- Разработка структур КНС Ф150 мм с ультратонким приборным слоем.

Спасибо за внимание!

«ПЕИПЕ» ОАЕ

124460, Москва, Зеленоград, 1-й Западный проезд 12, строение 2

Тел.: (495) 229-7303

Факс: (495) 229-7302

www.epiel.ru

sales@epiel.ru