Полиномиальный алгоритм проверки простоты числа

Комалёва Ольга

- Постановка задачи
- Идея алгоритма
- Полиномиальный алгоритм
- Оценка времени работы алгоритма
- Доказательство корректности алгоритма

Постановка задачи

Дано натуральное число n. Необходимо проверить является ли оно простым за полиномиальное время от длины числа n в бинарной форме.

- Постановка задачи
- Идея алгоритма
- Полиномиальный алгоритм
- Оценка времени работы алгоритма
- Доказательство корректности алгоритма

Основная идея алгоритма

Лемма 1.1.

Пусть
$$a \in \mathbb{Z}$$
, $n \in \mathbb{N}$, $n \ge 2$, $a \in \mathbb{Z}_n^*$. Тогда n - простое $\Leftrightarrow (X+a)^n \equiv X^n + a \pmod n$.

- Постановка задачи
- Идея алгоритма
- Полиномиальный алгоритм
- Оценка времени работы алгоритма
- Доказательство корректности алгоритма

Алгоритм Agrawal

```
Input: integer n > 1

1. if (\exists a, b > 1 : n = a^b) output COMPOSITE

2. r = \min\{a : o_a(n) > \log^2 n\}
```

- 3. if $(\exists a \le r: 1 < \gcd(a, n) < n)$ output COMPOSITE
- 4. if $(n \le r)$ output PRIME
- 5. for a = 1 to $\left[\sqrt{\varphi(r)} \log n \right]$ do if $\left((X + a)^n \neq X^n + a \pmod{X^r 1, n} \right)$ output COMPOSITE
- 6. output PRIME

- Постановка задачи
- Идея алгоритма
- Полиномиальный алгоритм
- Оценка времени работы алгоритма
- Доказательство корректности алгоритма

Время работы алгоритма

Лемма 2.1.

Пусть LCM(m) - наименьшее общее кратное первых m чисел.Тогда, начиная с m=7, $LCM(m) \ge 2^m$.

Лемма 2.2.

Существует $r \le \max(3, |\log^5 n|)$, и $o_r(n) > \log^2 n$.

Время работы алгоритма

Лемма 2.3. Асимптотическая сложность алгоритма равна

$$O^{\sim}(\log^{21/2} n)$$
. Где $O^{\sim}(t(n))$ равносильно $O(t(n)poly(\log(t(n)))$.

Доказательство:

Шаг 1: $O^{\sim}(\log^3 n)$

Шаг 2-3: $O^{\sim}(r(\log^2 n \log r + \log n)) = O^{\sim}(\log^5 n)$

Шаг 4: $O^{\sim}(\log n)$

Шаг 5: $O^{\sim}((\sqrt{\varphi(r)}\log n)r\log^2 n) = O^{\sim}(\log^{21/2} n)$

Так как каждая проверка равенства требует $O(\log n)$ умножений полиномов степени $_r$ с

коэффициентами размером $O(\log n)$

Время работы алгоритма

Лемма 3.2.(Фоуври)

P(n) - наибольший простой. делитель n.

 $\pi(x)$ - число простых чисел $p \le x$, для которых

$$P(p-1)>x^{2/3}$$
.Тогда $\exists \ c>0$, $n_0 \in N: \forall x \geq n_0 \quad \pi(x) \geq c \frac{x}{\log x}$.

Лемма 3.3.

Асимптотическая сложность алгоритма равна $O^{\sim}(\log^{15/2} n)$.

- Постановка задачи
- Идея алгоритма
- Полиномиальный алгоритм
- Оценка времени работы алгоритма
- Доказательство корректности алгоритма

Алгоритм Agrawal

```
Input: integer n > 1

1. if (\exists a, b > 1: n = a^b) output COMPOSITE
```

- 2. $r = \min \{ a : o_a(n) > \log^2 n \}$
- 3. if $(\exists a \le r: 1 < \gcd(a, n) < n)$ output COMPOSITE
- 4. if $(n \le r)$ output PRIME
- 5. for a = 1 to $\left[\sqrt{\varphi(r)} \log n \right]$ do if $\left((X + a)^n \neq X^n + a \pmod{X^r 1, n} \right)$ output COMPOSITE
- 6. output PRIME

Обозначения

$$arphi(r) = \left| Z_r^* \right|$$
 - ф. Эйлера $o_m(n) = \min\{k: n^k \equiv 1 \pmod m\}$ $LCM(m)$ - НОК всех $i \leq m$ p - простое, $p|n$, $p > r$ $l = \left\lfloor \sqrt{\varphi(r)} \log n \right\rfloor$ $I = \left\{ \left(\frac{n}{p} \right)^i p^j : i, j \geq 0 \right\}$ $P = \left\{ \Pi_{a=0}^l (X+a)^{e_a} : e_a \geq 0 \right\}$

$$G$$
 подгруппа Z_r^* , порожденна я I , $t = |G| > \log^2 n$ $Q_r(X) - r$ - й циклотомич еский многочлен над F_p $h(X)$ - неприводим ый множитель $Q_r(X)$, $o_r(p) = \deg(h(X)) > 1$ $F = F_p[X]/(h(X))$ - кольцо вычетов по модулю p и $h(X)$

 Γ подгруппа F, порожденная P

Доказательство корректности

Теорема 3.1.

Алгоритм возвращает PRIME $\Leftrightarrow n$ -простое.

Лемма 3.2.

Если n-простое, то алгоритм возвращает PRIME.

Доказательство корректности

Определение 3.3.

Пусть f(X)-полином, $m \in N$.

m называется интроспективным к f(X), если

$$[f(X)]^m = f(X^m) \pmod{X^r - 1, p}$$

Лемма 3.4.

Если m_1 и m_2 интроспективные к f(X) и g(X), то

- **1.** $m_1 m_2$ интроспективное к f(X),
- **2.** m_1 интроспективное к f(X)g(X).

Доказательство корректности

Лемма 3.5.(Hendric Lenstra Jr.)

$$|\Gamma| \ge \binom{t+l}{t-1}$$

Лемма 3.6.

Если n не является степенью простого числа p, то $|\Gamma| \le n^{\sqrt{t}}$

Лемма 3.7.

Если алгоритм возвращает PRIME, то n - простое.

Если не запомните ничего другого

- Существует полиномиальный алгоритм проверки простоты числа
- Идея алгоритма:

$$n$$
 - простое $\Leftrightarrow (X+a)^n \equiv X^n + a \pmod{n}$

• Доказано, что алгоритм работает корректно и за время $O^{\sim}(\log^{15/2}n)$

Источники

- M.Agrawal, N.Kayal, N.Saxena «PRIMES is in P»
- А.Черемушкин «Лекции по арифметическим алгоритмам в криптографии»
- П.Ноден, К.Китте «Алгебраическая алгоритмика»
- Т.Кормен, Ч.Лейзерсон, Р.Ривест «Алгоритмы: построение и анализ»