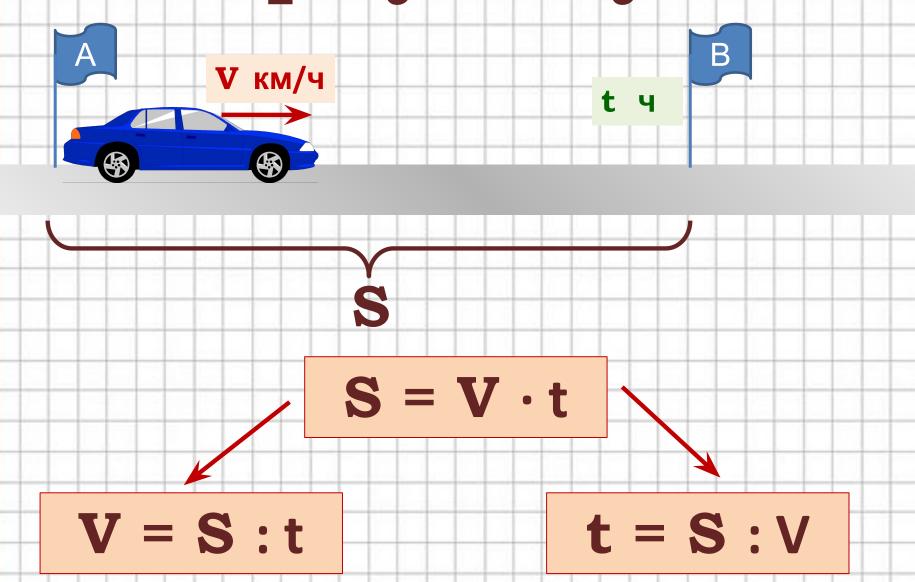
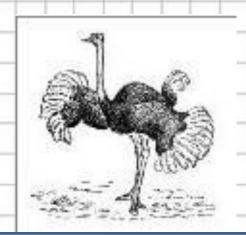

Скорость, расстояние, время и таинственные отношения между ними.



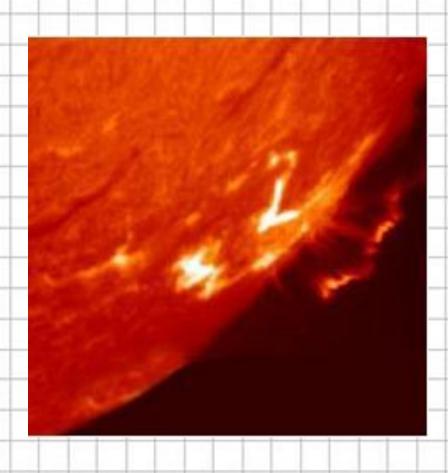
Скорость

Скорость (V) - это путь пройденный за единицу времени.


Формула пути

Задача 1.

Автомобиль «Москвич» за 3 часа может проехать 360 KM. Бескрылая птица страус - лучший бегун в мире - развивает скорость до 120 км/ч. Сравните скорости автомобиля «Москвич» и страуса.



$$\upsilon_{aвтом.} = \upsilon_{cmpayca} = 120 \ км / \ ч$$

Задача 2.

Скорость распространения света самая большая природе - 300000 км/с. На Солнце произошла вспышка. Через какое время ее увидят на Земле, если расстояние от Земли до Солнца равно 15000000 км?

150000000 : 3000000 = 500 c

Решите задачи:

Nº61

1) 75:5=15 (км/ч) – скорость лыжника,

2) 60: 15 = 4 (ч) – пройдет 60 км.

Ответ: 4 ч.

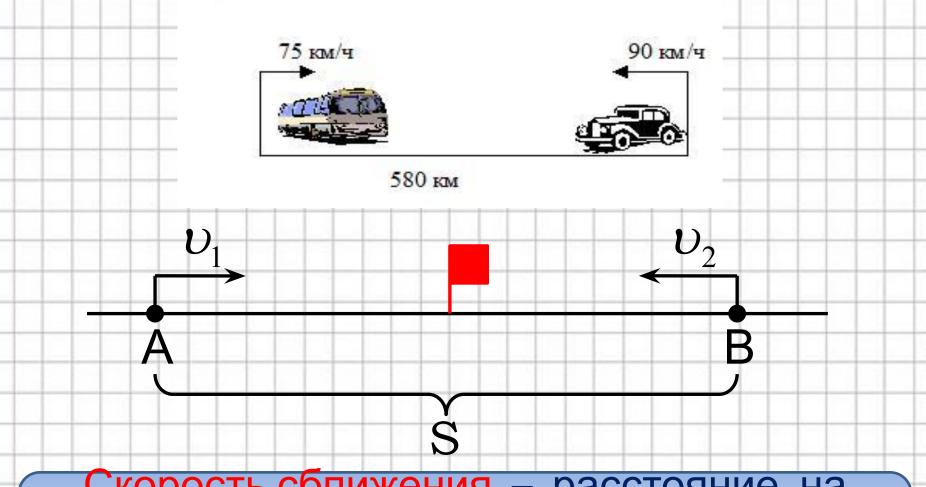
№62

- 1) $45 \cdot 2 = 90$ (км) за 2 ч,
- 2) $3 \cdot 60 = 180$ (км) за 3 ч,
- 3) 90 + 180 = 270 (км) -за 5ч,

Ответ: 270 км.

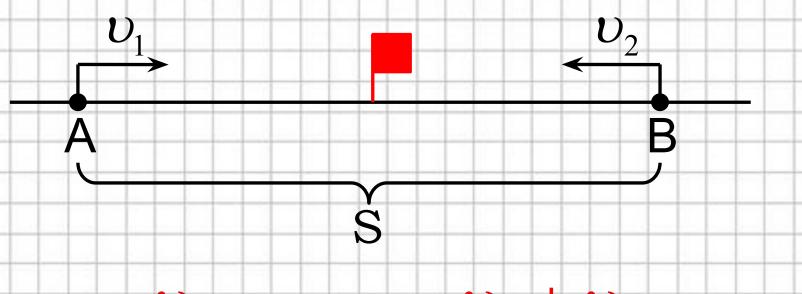
Решите задачи:

Nº63 (1)


1) 95 – 76 = 19 (км/ч) – скорость велосипедиста,

2) 95 : 19 = 5 (раз) – скорость мотоциклиста больше скорости велосипедиста.

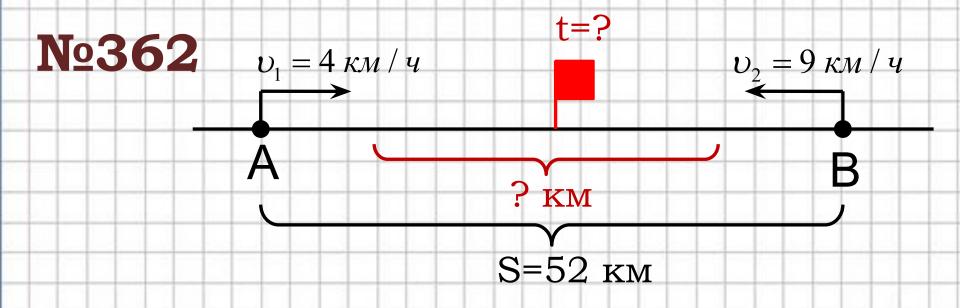
Ответ: 4 ч.



Встречное движение

Скорость сближения – расстояние, на которо сближаются объекты за единицу времени

Встречное движение

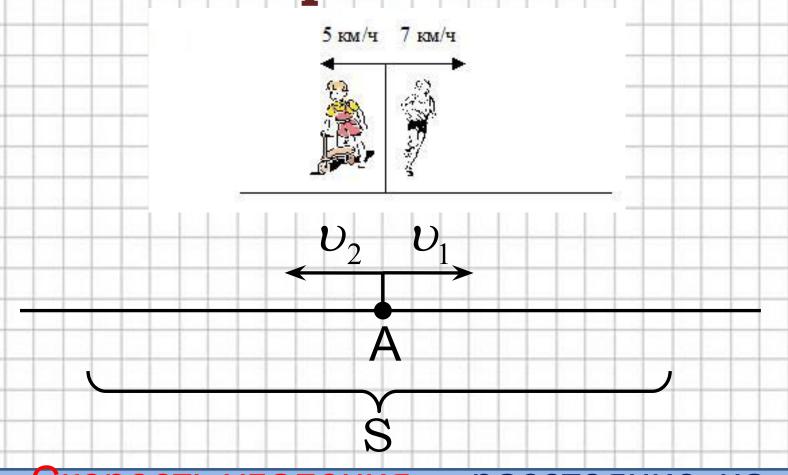


$$u_{c onu$$
 $= u_1 + u_2$

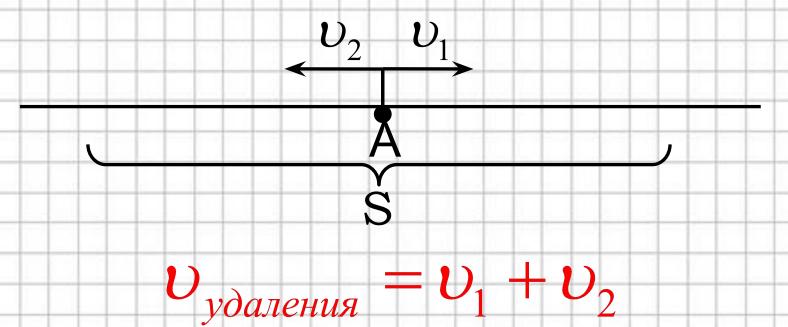
$$S = \upsilon_{c 6$$
лижения $\cdot t$

S - первоначальное расстояниеt – время движения до момента встречи

Встречное движение



- 1) 4 + 9 = 13 (км/ч) скорость сближения,
- 2) 52 13·1=39 (км)-будет между ними через 1 ч,
- 3) 52 13·2=26 (км)-будет между ними через 2 ч,
- 4) 52 13·4=0 (км)-будет между ними через 4 ч,
- 5) 52:13=4 (ч)-встретятся.


Урок 2 Задачи на движение

Решите задачу: №607

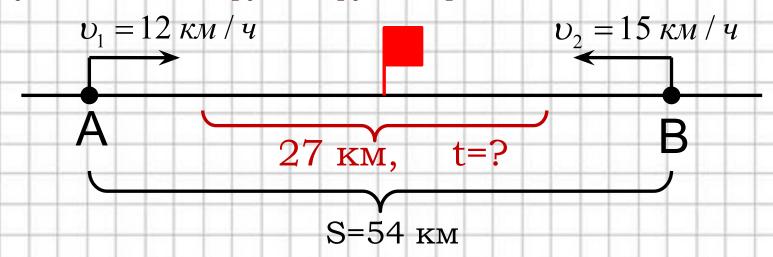
Скорость удаления – расстояние, на которое удаляются объекты за единицу удаления времени

$$S = \upsilon_{y\partial anehus} \cdot t$$

S – расстояние t – время движения

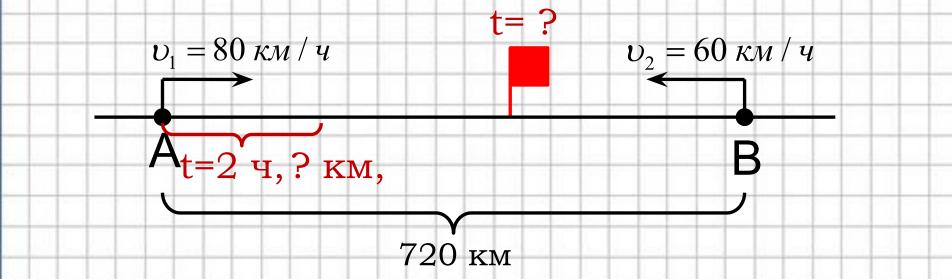
Решите задачу: №456

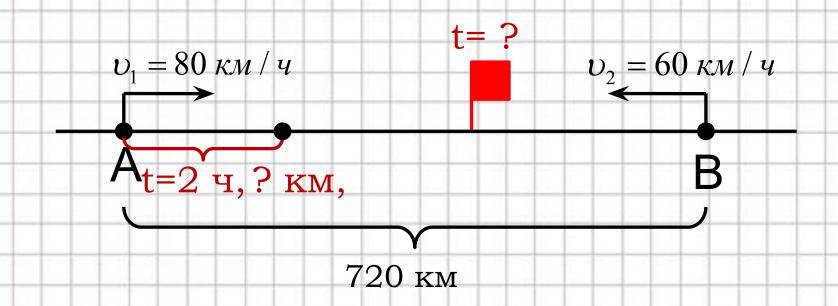
Встречное движение задача.


Два велосипедиста выехали одновременно навстречу друг другу из двух сел, расстояние между которыми 54 км. Скорость первого 12 км/ч, второго – 15 км/ч. Через сколько часов они будут находиться друг от друга на расстоянии 27 км?

Задача.

Два велосипедиста выехали одновременно навстречу друг другу из двух сел, расстояние между которыми 54 км. Скорость первого 12 км/ч, второго – 15 км/ч. Через сколько часов они будут находиться друг от друга на расстоянии 27 км?

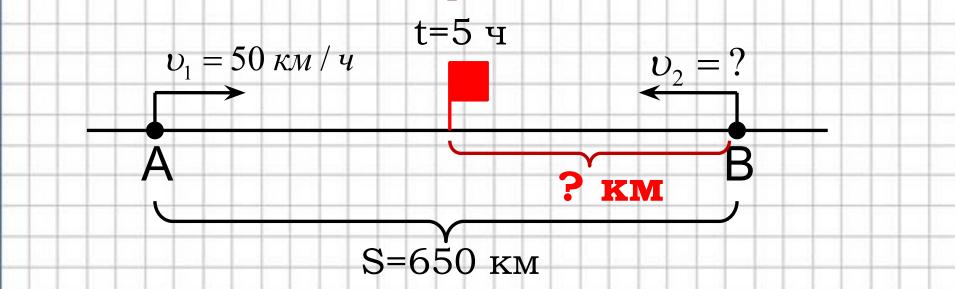



- 1) 12 + 15 = 27 (км/ч) скорость сближения,
- 2) 54 27 = 27 (км) они должны сблизиться,
- 3) 27 : 27 = 1(ч)–будут находиться на расстоянии 27 км.

Ответ: 1 ч.

Встречное движение задача.

Расстояние между городами А и В равно 720 км. Из А в В вышел скорый поезд со скоростью 80 км/ч. Через 2 ч навстречу ему из В в А вышел пассажирский поезд со скоростью 60 км/ч. Через сколько часов после выхода скорого поезда они встретятся?



- 1) 80 · 2 = 160 (км) скорый поезд за 2 ч,
- 2) 720 160 = 560 (км)– расстояние между поездами,
- 3) 80 + 60 = 140 (км/ч)– скорость сближения,
- 4) 560:140 = 4 (ч)—встретятся.

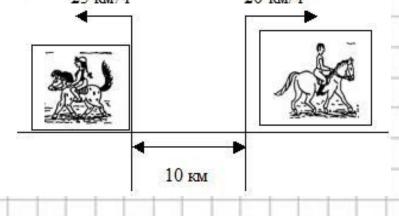
<u>Ответ:</u> 4 ч.

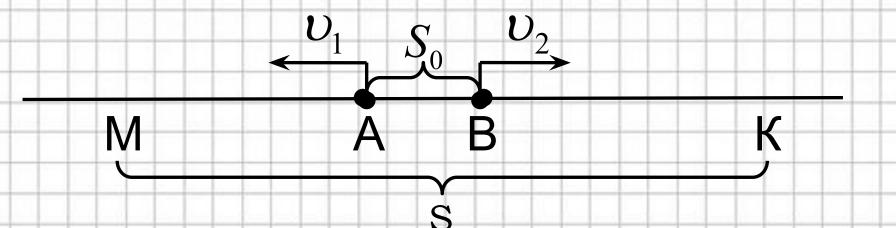
Встречное движение задача.

Из двух городов, расстояние между которыми 650 км, одновременно навстречу друг другу выехали два поезда и встретились через 5 часов. Скорость одного поезда 50 км/ч. Найдите расстояние, пройденное вторым поездом до места встречи.

<u>Домашнее задание:</u>

NºNº 63(2), 67, 68, 73, 74(a, 6)




 Задача.
 Найти расстояние между

 участниками движения через 2 часа после

 одновременного выхода.

$$S = \upsilon_{y\partial a nehu s} \cdot t + S_0$$

Задача. Из двух городов, находящихся на расстоянии 65 км друг от друга, выехали одновременно в противоположных направлениях два автомобиля. Через 3 часа расстояние между ними стало равно 635 км. Найдите скорость второго автомобиля, если известно, что скорость первого автомобиля составляет 80 км/ч.

Решите задачи: №97(2), 105

											Ħ														
			П					П																	
			\exists		\top																				1
		-	+	+	+	+		-																	
		-	+	+	+	+		-1																	
_		-	-	+	+	+		-			-	-				-	-				-				
_		-	4	-	4	+		-	_	Ш														_	
						Т	7				1														
					\top	T																			
					+	+																			
_		+	+	+	+	+		-								\dashv	\vdash			-				-	
_		-	-	+	+	+		-	-		-						-		_					-	
		_	4	4	4	4		_	_																
					Т	Т																			
			Т																						
			7		\pm			7																	
		-	+	+	+	+		-																	
		+	+	+	+	+		-	-	-		-	-	=	-	\exists					-			-	
_					+	+		-	-											_	_			-	
						-		_			Ш														
			- 1																						

											Ħ														
			П					П																	
			\exists		\top																				1
		-	+	+	+	+		-																	
		-	+	+	+	+		-1																	
_		-	-	+	+	+		-			-	-				-	-				-				
_		-	4	-	4	+		-	_	Ш														_	
						Т	7				1														
					\top	T																			
					+	+																			
_		+	+	+	+	+		-								\dashv	\vdash			-				-	
_		-	-	+	+	+		-	-		-						-		_					-	
		_	4	4	4	4		_	_																
					Т	Т																			
			Т																						
			7		\pm			7																	
		-	+	+	+	+		-																	
		+	+	+	+	+		-	-	-		-	-	=	-	\exists					-			-	
_					+	+		-	-											_	_			-	
						-		_			Ш														
			- 1																						