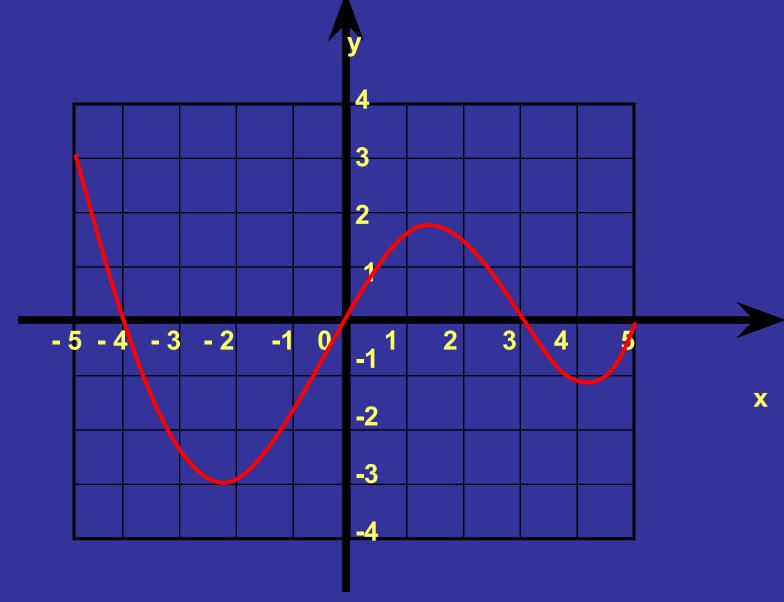
Показательная функция, ее свойства и график

Повторение

1.
$$a^n \cdot a^m$$

$$2. \frac{a^n}{a^m}$$

3.
$$\left(a^m\right)^n$$


4.
$$(a \cdot b)^n$$

5.
$$\left(\frac{a}{b}\right)^n$$

6.
$$a^{\frac{m}{n}}$$

7.
$$a^{-n}$$

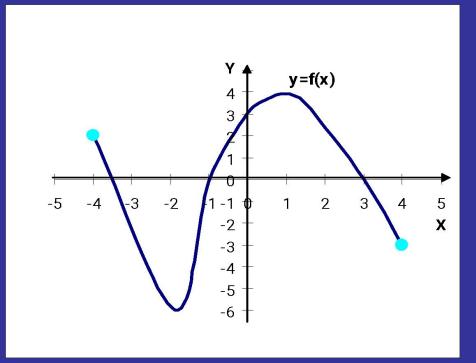
8.
$$a^0$$

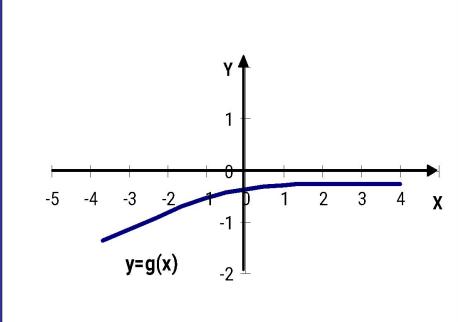
 D(f)=

 E(f)=

 y=0 при x=

 y>0 при x


 y<0 при x</td>


 Функция возрастает при х

 Функция убывает при х

План исследования функции.

- 1. Область определения.
- 2. Чётность (нечётность).
- 3. Периодичность.
- 4. Точки пересечения с осями координат, промежутки знакопостоянства.
- 5. Производная и критические точки.
- 6. Монотонность и экстремумы.
- 7. График функции.
- 8. Множество значений.

a)D(y)=
$$[-4;4];$$

$$6)E(y)=[-6;4];$$

г)возрастает на [-2;1]

убывает на [-4;-2] и на [1;4];

д)
$$y_{\text{max}} = 4$$
, $y_{\text{min}} = -6$.

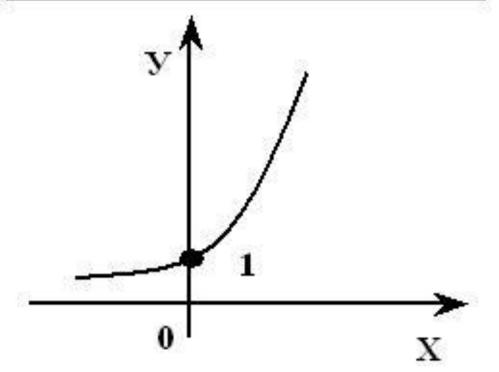
a)D(y)=(-
$$\infty$$
;+ ∞);

$$θ$$
)E(y)=(-∞;0);

г)возрастает на
$$(-\infty; +\infty)$$
;

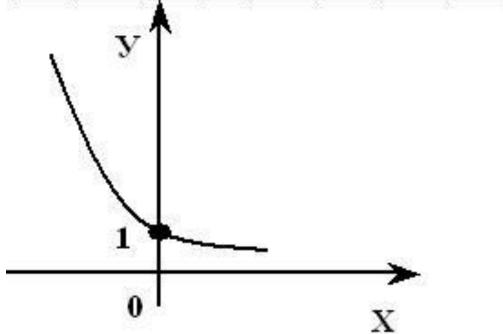
$$_{\text{max}}$$
, y_{min} - нет

Определение. Показательной функцией называют функцию вида

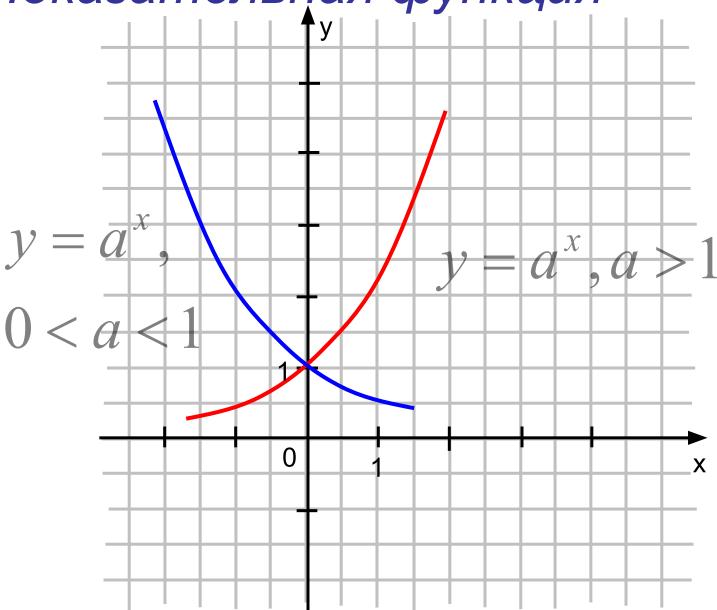

$$y=a^{x}$$
, $z = a^{x}$, $z = a + 1$, $z =$

ПРИМЕРЫ

$$y = 2^x, y = \left(\frac{1}{2}\right)^x, y = (3,5)^x, y = \left(\frac{3}{4}\right)^x$$


$$y=2^x$$

х	-3	-2	-1	0	1	2	3
у	1 8	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8



$$y = \left(\frac{1}{2}\right)^x$$

х	-3	-2	-1	0	1	2	3
У	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

Показательная функция

Свойства функции:

- D(f)=R, т.к. х-любое
- E(f)=R+, т.к. если а >0, то и а^x>0
- Функция возрастает при
 - $m \times e$ соли. $a^{x_1} > x_2$, $x x_1 > x_2$
- функция убывает при

$$\theta \in 1, a ... a^{x_1} > x_2, x x_1 < x_2$$

• График показательной функции обязательно проходит через точку (0;1), т.к. если x=0, то y=1.

СВОЙСТВА ФУНКЦИИ

	0 <a<1< td=""><td>a>1</td></a<1<>	a>1
1. Область определения	x €(-∞;+∞)	x €(-∞;+∞)
2. Множество значений	y €(0;+∞)	y €(0;+∞)
3. Пересечение с осью ОҮ	при x=0 y=1	при x=0 y=1
4. Монотонность	убывает на (-∞;+∞), если х ₂ >х ₁ , то у ₂ <у ₁	возрастает на (-∞;+∞), если х ₂ >х ₁ , то у ₂ >у ₁
5. Наибольшее и наименьшее значения функции	не существует	не существует

Укажите множество значений функции:

$$y = 2^x + 5$$

$$y = 0.3^x - 4$$

$$y = 5.6^{x} + 11$$

$$y = |7^x - 2|$$

Используя свойства убывания или возрастания показательной функции, сравнить с единицей следующие числа:

$$\begin{array}{ccc}
2,3^{\sqrt{3}} & \left(\frac{2}{7}\right)^{6} \\
0,6^{-4} & \left(\sqrt{5}\right)^{-3} & \left(\frac{3}{11}\right)^{-7}
\end{array}$$

Выяснить, является ли данная функция возрастающей или убывающей :

$$y = 6^x - 2$$

$$y = 0.17 + 4^x$$

$$y = 0.24^x + 5$$

$$y = \left(\frac{1}{8}\right)^{-x} - 2$$

Решите графически уравнение.

1.
$$3^x = 4 - x$$
.

2.
$$3^{-x} = -\frac{3}{x}$$

Найти наибольшее и наименьшее значения функции на отрезке $\left[-1;2\right]$

$$y = 3^{x} + 1$$

$$y = 2^{|x|}$$

$$y = \left(\frac{1}{5}\right)^x$$

$$y = 5^{|x|} - 1$$

Задание на дом.

<u>Пункт 35.</u>

Nº 446

Nº 447

Nº *448*

Nº 454

Nº 455