РЕШЕНИЕ ЗАДАЧ ОПТИМИЗАЦИИ

Задача о планированиии производства

- Фабрика выпускает 3 вида изделий: *изделие А, изделие В, изделие С*.
- Прибыль от продажи 1 шт. *изделия А* составляет 13 у.е., *изделия В* 18 у.е. и *изделия С* 22 у.е.
- Найти оптимальные объемы выпуска трех видов продукции для получения максимальной прибыли от их продажи.
- При решении данной задачи должны быть учтены следующие ограничения:
 - общий объем производства всего 300 изделий;
 - должно быть произведено не менее 50 изделий А;
 - должно быть произведено не менее 40 изделий В;
 - должно быть произведено не более 40 изделий С.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Переменные модели

 X_A, X_B, X_C – объемы производства изделий A, В и C соответсвенно

Целевая функнция:

$$13* X_A + 18* X_B + 22* X_C$$

Ограничения:

$$X_A \ge 50, X_B \ge 40, 0 \le X_C \le 40,$$

 $X_A + X_B + X_C = 300$

Транспортная задача

Имеются 5 пунктов производства и 4 центра распределения продукции. Возможности пунктов производства 20, 50, 10, 20, 10 соответсвенно. Объемы потребления 40, 30, 20 и 20 соответственно. Стоимости перевозки единицы продукции от производителя к потребителю представлены в таблице.

	ЦР 1	ЦР2	ЦР3	ЦР4
ПП1	2	7	7	6
ПП2	1	1	1	2
ПП3	5	5	3	1
ПП4	2	8	1	4
ПП5	3	2	1	5

Необходимо составить план перевозок по доставке требуемой продукции в центры распределения, минимизирующий суммарные транспортные расходы

Построение математической модели

Переменные модели

 X_{ij} — объем перевозок с пункта производства в центр распределения

Целевая функция

$$\sum_{i=1}^{4} \sum_{j=1}^{5} c_{ij} x_{ij}$$

Ограничения

Xij≥0

Вся продукция должна быть вывезена и все потребности центров распределения должны быть удовлетворены

Задача о назначениях

Четверо рабочих могут выполнять четыре вида работ. Стоимости рабочими выполнения каждой из работ представлена в таблице.

Необходимо составить план выполения работ таким образом, чтобы все работы были выполнены, каждый рабочий был загружен на одной работе, а стоимость выполнения всех работ была минимальной

	Работа 1	Работа 2	Работа 3	Работа 4
Рабочий 1	1	4	6	3
Рабочий 2	9	10	7	9
Рабочий 3	4	5	11	7
Рабочий 4	8	7	8	9

Математическая модель

Переменные модели:

 $X_{ij} = 0$, если і-м рабочим не выполняется ј-я работа $X_{ij} = 1$, если і-м рабочим выполняется ј-я работа

Целевая функция:

$$\sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} X_{ij}$$

Ограничения:

 X_{ij} — могут принимать значения 0 или 1

$$\sum_{i=1}^{4} x_i = 1 \qquad \sum_{j=1}^{4} x_j = 1$$

Задача о раскрое

Прутки длиной 8 метров разрезаются на заготовки длиной 3 и 2.4 м, Заготовок первого типа нужно получить не менее 25 штук, а второго - не менее 36 штук.

Определить **минимальное число** разрезаемых прутков. Допускаются лишь способы разрезки, при которых длина остатка меньше любой заготовки.

Способы раскроя

	Заготовка 1 (3 м)	Заготовка 2 (2,4 м)	
Способ 1	2	0	
Способ 2	1	2	
Способ 3	0	3	

Математическая модель

Переменные модели:

 X_1, X_2, X_3 - количество прутков, разрезаных способами 1, 2 и 3 соответсвенно

Целевая функция: $X_1 + X_2 + X_3$

Ограничения:

 X_1, X_2, X_3 –целочисленные

$$X_1 \ge 0, X_2 \ge 0, X_3 \ge 0$$

Количество заготовок 1 ≥ 25

Количество заготовок 1 ≥ 25

Задача о смеси

Фирме требуется уголь с содержанием фосфора не более 0,03 % и с долей зольных примесей не более 3,25 %. Три сорта угля A, B, C доступны по следующим ценам (за 1 т): Как смешивать уголь этих сортов, чтобы получить смесь минимальной стоимости и удовлетворить ограничениям на содержание примесей?

Сорт угля	Содержание фосфора, %	Содержание зольных примесей, %	Цена, у.е.
A	0.06	примесси, 70	20
A	0,06	2	30
В	0,04	4	30
С	0,02	3	45

Математическая модель

Переменные модели:

 X_{A}, X_{B}, X_{C} -оптимальная доля сорта угля A, B и C в смеси

Целевая функция:

$$30 * X_A + 30 * X_B + 45 * X_C$$

Ограничения:

$$\begin{array}{l} X_{A}, X_{B}, X_{C} \ge 0 \\ X_{A} + X_{B} + X_{C} = 1 \\ 0.06 * X_{A} + 0.04 * X_{B} + 0.2 * X_{C} \le 0.03 \\ 2 * X_{A} + 4 * X_{B} + 3 * X_{C} \le 3.25 \end{array}$$