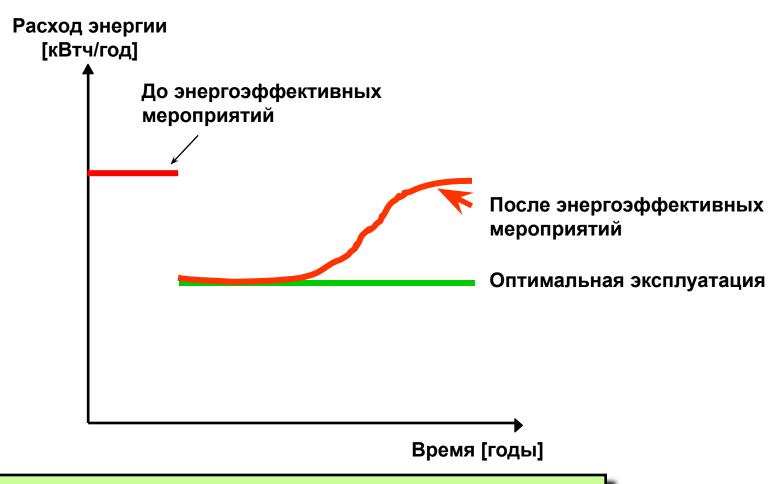
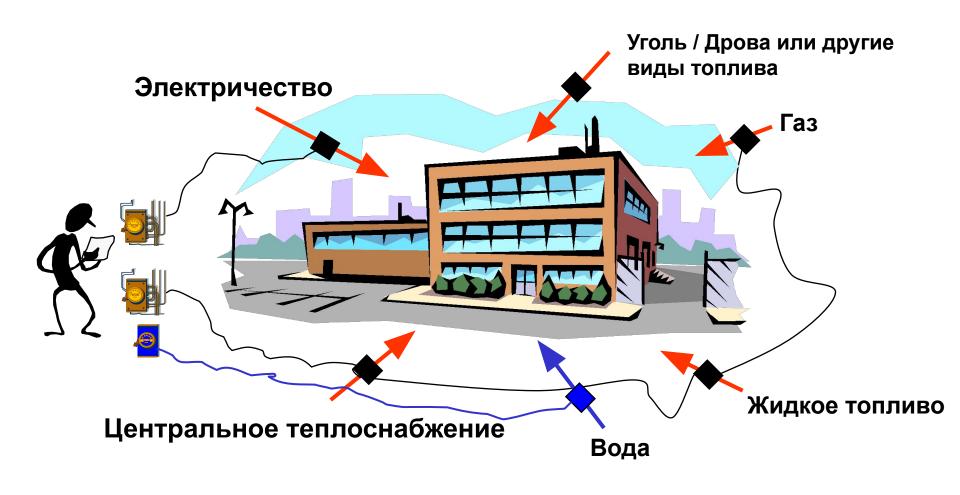


ЭНЕРГОМОНИТОРИНГ



Процесс развития проекта

Норвежский опыт



Решение: Энергомониторинг

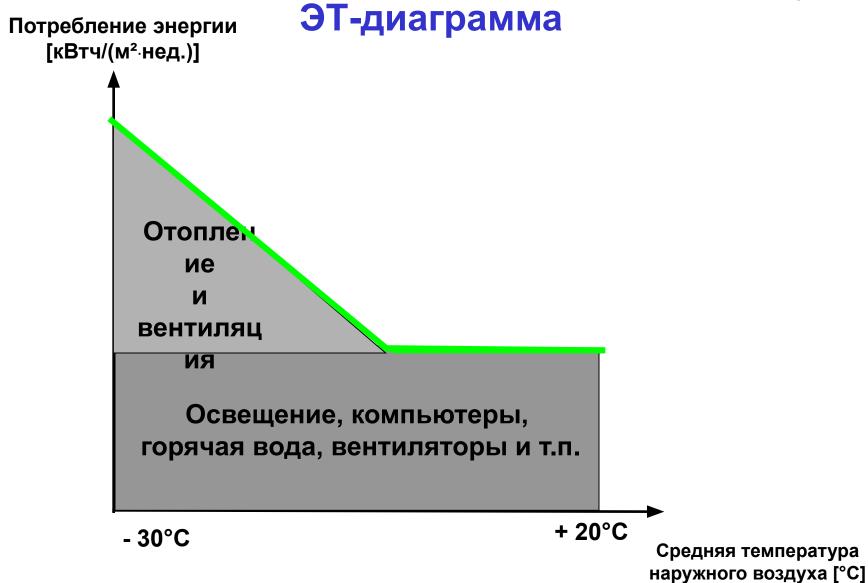
Энергомониторинг

Периодическая (еженедельная) регистрация потребления энергии и соответствующей средней температуры наружного воздуха

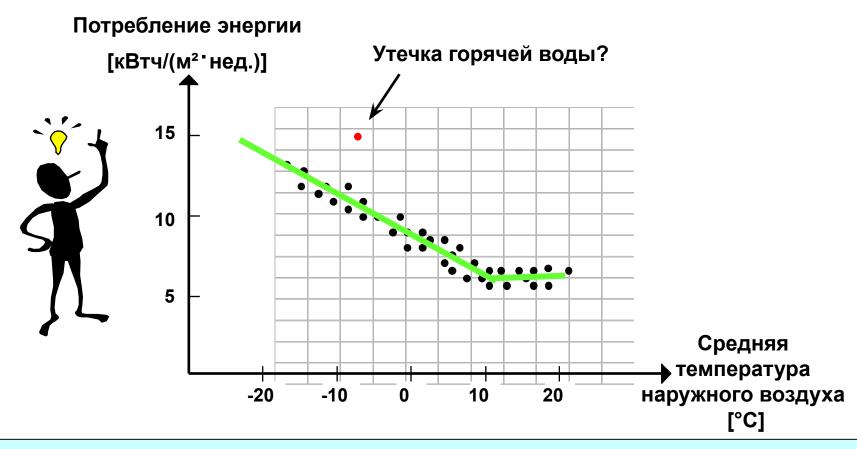
ЭТ-диаграмма

Потребление энергии [кВтч/(м²·нед.)]

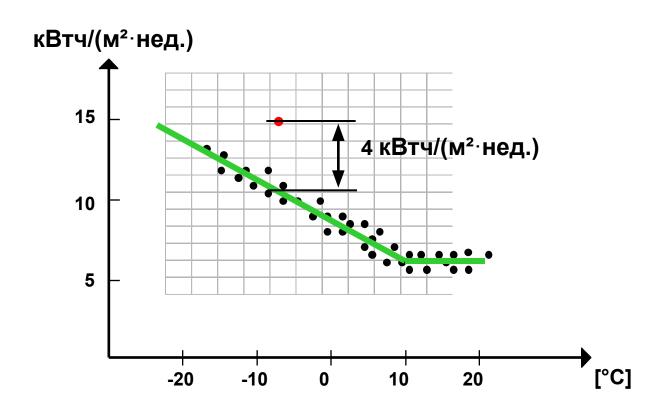
Средняя температура наружного воздуха [°C]


ЭТ-кривая

Потребление энергии [кВтч/(м²⋅нед.)]


Средняя температура наружного воздуха [°C]

Отклонения - в чем проблема?



Новые и существующие здания:

Очень важны программы по Энергоменеджменту для эксплуатации здания

Энергомониторинг, пример

Потери каждую неделю:

Отапливаемая площадь здания 2 300 м²

Тариф на энергию 0,12 €/кВтч

Потери 4 кВтч/м² x 2 300 м² x 0,12 €/кВтч = 1 100 €/нед.

Несколько примеров из Осло

Общественное здание с рестораном, централизованное теплоснабжение

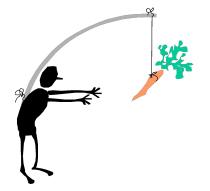
Энергомониторинг показал слишком высокое потребление. 4 недели ушло на обнаружение утечек горячей воды в ресторане и исправление неполадок Потеряно за 4 недели: 66 000 кВтч, 5 700 €.

Без ЭТ-кривой проблема была бы выявлена намного позже ?

Несколько примеров из Осло

Концертный зал в Осло, централизованное теплоснабжение

Современная система кондиционирования - система автоматизации здания не показала никаких ошибок. Энергомониторинг показал слишком высокое потребление.


Причина: системы отопления и охлаждения работали одновременно. Потеря нескольких тысяч евро ежемесячно.

Без энергомониторинга нарушение, вероятно, не было бы выявлено.

Энергомониторинг - выгоды

- Более корректная работа технических установок
- Быстрое обнаружение ошибок / неполадок технического оборудования
- Быстрое получение ответной реакции на последствия, вызванные изменением в эксплуатационных процедурах
- Повышение осведомленности о возможностях энергосбережения
- Документирование результатов выполненных мероприятий
- Возможность лучше планировать бюджет на расходы по энергии и воде
- Задействованный и мотивированный обслуживающий и эксплуатационный персонал

Снижение потребления энергии (5 - 15 %)

Улучшенный микроклимат в здании

Действия для одного здания

Как начать Энергомониторинг:

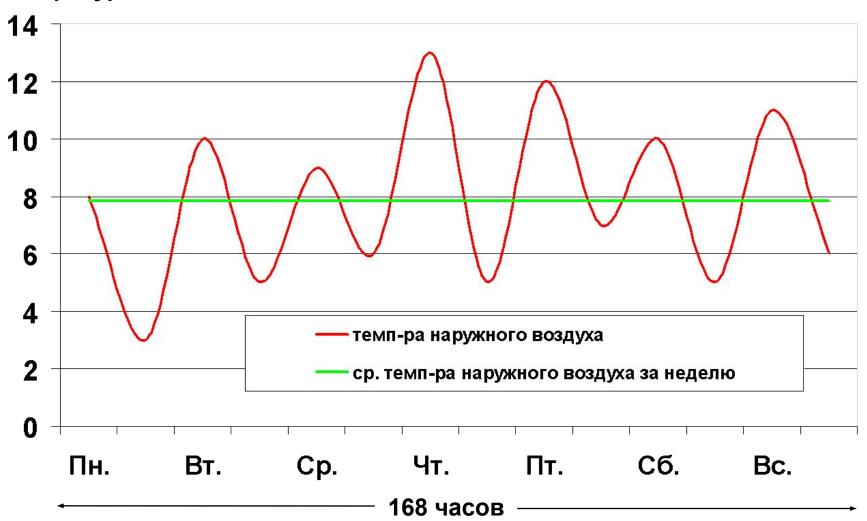
- 🛮 Собрать общие данные для здания, включая счетчики
- Разработать Руководство по Энергомониторингу для здания
- Обучить персонал по эксплуатации и обслуживанию

Работа (каждую неделю):

- Снятие показаний счетчиков
- □ Расчеты (энергопотребление на м²)
- Климат (средняя температура наружного воздуха)
- Нанесение точек на ЭТ- диаграмму
- Отклонения от ЭТ- кривой? Проанализировать, определить, откорректировать

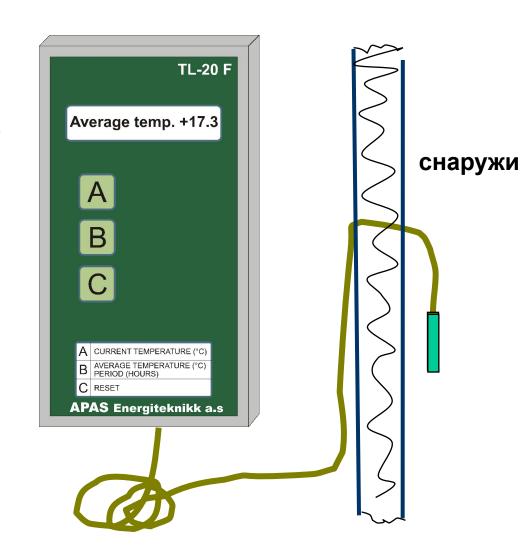
Составление отчетов:

□ Еженедельных, ежемесячных, ежеквартальных, годовых


Оборудование и инструментарий для Энергомониторинга

- □ Измеритель средней наружной температуры
- Энергосчетчики
- 🛮 ЭТ- кривая
- □ Таблицы подсчета энергии
- □ Список проверки отклонений
- ENSI® Energy Monitor (инструментальное средство в программе Excel)

Климат: Средняя температура наружного воздуха

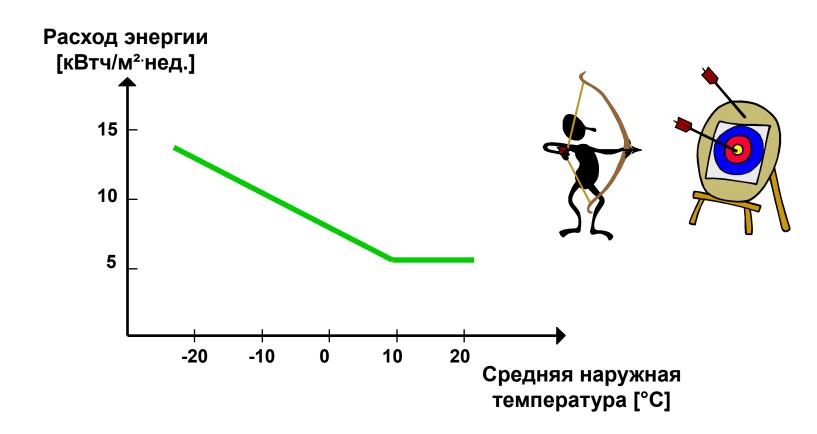


Измеритель средней температуры наружного воздуха

- Измеряет среднюю температуру наружного воздуха и продолжительность периода (1 неделя = 168 часов)
- Вычислительный блок располагается внутри помещения, легко доступен для пользователя
- Датчик прибора располагается в тени (на северной стороне здания)

Энергосчетчики

- □ Есть ли счетчики электричества, центрального теплоснабжения, жидкого топлива?
- □ Показания счетчиков считываются непосредственно (кВтч, Гкал, т.п.) или рассчитываются по переводным коэффициентам
- □ Дополнительные счетчики, разделяющие здание на энергетические зоны / системы?



ЭТ- кривая

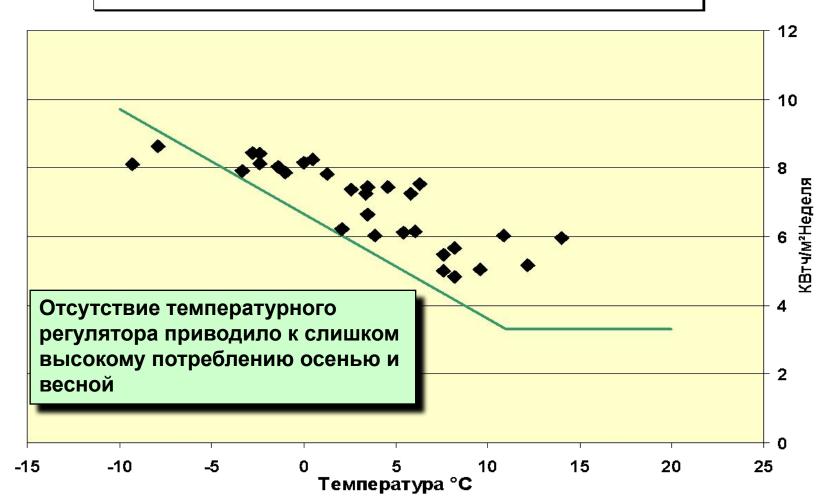
Уникальная ЭТ- кривая для каждого здания

Формы для расчета энергопортебления

□ Регистрация показаний энергосчетчиков и измерителей температуры

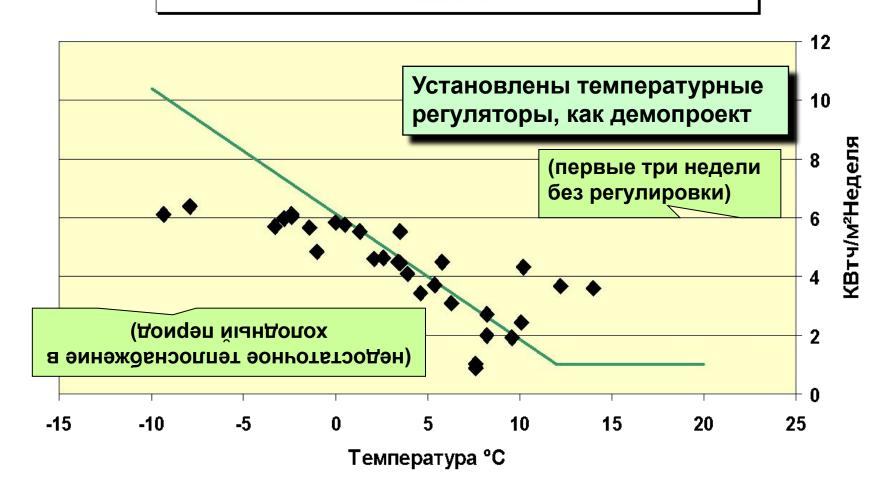
ЭНЕРГОМОНИТОРИНГ – ПОКАЗАНИЯ СЧЕТЧИКОВ ЭНЕРГОПОТРЕБЛЕНИЯ						
Здание:		Школа в Норвегии				
Дата		23.03.06	30.03.06			
Время		10	09			
Продолжительность цикла измерений [ч]		168	167			
		Показания				
Средняя температура:	Показания:	1,3	3,5			
Счетчики расхода:						
EL1 Электросчетчик	Показания:	14 656	14 969			
	К-т шкалы:	30	30			
EL2 Электросчетчик	Показания:	7 941	8 111			
	К-т шкалы:	30	30			
OIL 1	Показания:	2 877	2 969			
Счетчик времени,	V T WYSEL W	100	100			

Нанесение точек на ЭТ-диаграмму


Список проверки отклонений

Проверяемая система	Возможная причина		
Система отопления	Неверна настройка термостатов		
	Автоматическая система управления в ручном режиме (т.е. не ведется контроль температуры в течение дня)		
	Испорчен таймер ночного сброса температуры		
	Открыты заслонки на бойлерах, когда они не используются (потери с проходящим воздухом)		
	Открыты окна		
	Испорчены регулировочные клапаны (не происходит шунтирование воды)		
	Протечка в распределительной системе		
	и т. д.		
Система вентиляции	Испорчен таймер пуска / остановки		
	Испорчен теплообменник		
	и т.д.		

Больница №1, Казахстан; ЭТ-диаграмма до мероприятий


Павильон 1-5 - ЭТ-диаграмма за период: 06.10.2003 - 03.05.2004

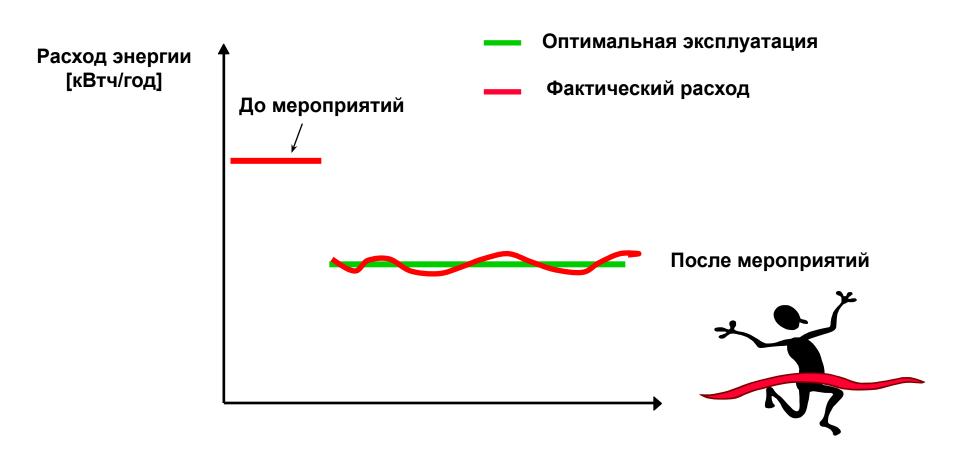
Больница №2, Казахстан; ЭТ-диаграмма после мероприятий

Павильон 10-ЭТ-диаграмма за период: 06.10.2003 - 03.05.2004

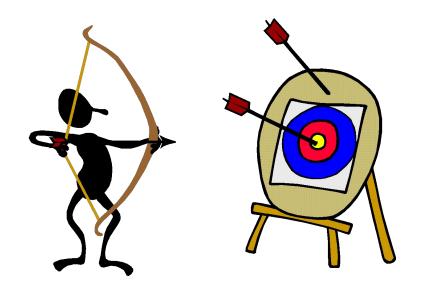
Центральный вокзал, Осло

60 млн.чел. в год - наиболее посещаемое здание в Норвегии

Программа менеджмента для 70.000 м² существующих зданий и сооружений:


- За 7 лет энергопотребление снижено на 40% (от 4 до 70 энергосчетчиков)
- Водопотребление снижено на 50 %

Норвежский опыт


Энергомониторинг, основные характеристики

- □ Легко внедрить
- Требует небольших инвестиций
- □ Существенная экономия энергии (5 15%) благодаря правильной работе технических установок
- Хорошее средство для определения/ выбора зданий для Сканирования, проведения Энергоаудита и реализации энергоэффективных мероприятий
- Документирование результатов выполненных мероприятий
- ☐ Обеспечение постоянной экономии от реализованных мероприятий

Энергомониторинг – увеличивает "коэффициент попадания" ____

