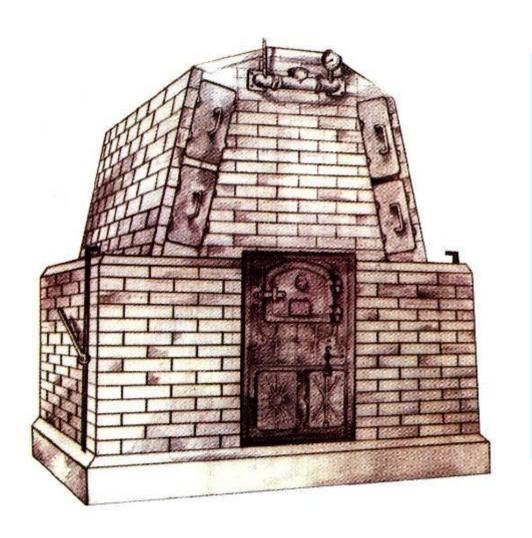
Теплотехнические испытания водогрейных котлов на местных видах топлива производительностью до 1,0 МВт

(первый этап)

ОИЭЯИ-Сосны, БЕЛЭНЕРГОСБЕРЕЖЕНИЕ

Цель исследований:


- проведение балансовых теплотехнических опытов по определению фактических эксплуатационных теплотехнических и экологических показателей водогрейных котлов на местных видах топлива;
- проведение анализа полученных результатов опытов и разработка рекомендаций по использованию водогрейных котлов на местных видах топлива

Основание для проведения работ

- поручением Совета Министров Республики Беларусь от 04.09.2004 г. за № 03/313-112;
- Протоколом совещания в Комитете по энергоэффективности при Совете Министров Республики Беларусь от 1.10.2004 г

Табл. 1 Средства измерения и оборудование, применяемые при проведении испытаний

Наименование измеряемого параметра	Наименование средств измерения и оборудования	Зав. №	Дата проведен ия аттестаци и	Класс точности, погрешность измерений
1	2	3	4	5
Температура и состав уходящих газов, °С	Анализатор TESTO-435	91085560063	20.05.2004	O_2 : ± 0,2% CO, NO: ± 5%
Температура воды на входе и на выходе котла, °C	Термопреобразователь сопротивления платиновый ТСП 1199	3940	21.03.2003	±(0,3+0,05) °C
Давление воды, МПа	Манометр МТИ	55021	11.08.2004	± 0,6%
Масса твердого топлива, кг	Весы KCS 300s «Mettler Toledo»	2511252	12.12.2003	0,01 кг
Теплопроизводительность котла, кВт	Теплосчетчик Комбиметр П	30255305	10.11.2004	± 4%
,	Теплосчетчик ТЭМ 05М-2	38228	2.08.2003	± 4%
Температура окружающей среды, °С	Термометр лабораторный ртутный 734 21.06.2004 ТЛ-4		±1 °C	
Продолжительность опыта, ч	Секундомер СОСпр «АГАТ»	7534	21.04.2004	± 1 c

Котел «Минск-1» (Минский завод отопительного оборудования)

Была испытана вся линейка оборудования, выпускаемого заводом, с установленной мощностью: 266, 389 и 512 кВт.

образцы отличаются количеством однотипных чугунных секций: 18, 26 и 34 соответственно.

Сжигание топлива осуществляется на колосниковой решетке. Теплообмен реализуется на радиационных и конвективных поверхностях секций.

Наименование и размерность	Значение параметров					
показателей	Опыт № 1	Опыт № 2	Опыт № 3	Среднее значение		
1	2	3	4	5		
Вид топлива	брикеты торфяные производства ПРУТП «УСЯЖ»					
Низшая теплота сгорания топлива, кДж/кг	15220					
Продолжительность опыта, ч	1,25	1,25	1,25	1,25		
Давление воды, МПа	0,42	0,42	0,42	0,42		
Температура воды на входе в котел, °С	52,0	56,0	59,6	55,9		
Температура воды на выходе из котла, °C	71,6	73,5	76,4	73,8		
Расход воды, м ³ /ч	9,82	9,75	9,56	9,71		
Теплопроизводительность, кВт	200,3	192,4	180,9	191,2		
Масса израсходованного топлива, кг	135,6	132,92	128,45	132,32		
Расход топлива, кг/ч	108,48	106,34	102,76	105,86		
Коэффициент полезного действия, %	43,7	42,8	41,6	42,7		
Коэффициент избытка воздуха	2,19	2,35	2,22	2,25		
Температура уходящих дымовых газов, °C	460,4	391,5	378,9	410,3		
Температура окружающей среды, °С	- 4	- 4	- 4	- 4		
Состав уходящих дымовых газов:	11,4 247 8,6 298 313 18,9	12,1 247 8,0 301 316 18,9	11,6 224 8,5 244 256 18,9	11,7 239 8,4 281 295 18,9		



небольшой стальной котел, изготовленного в СПК им. Дзержинского.

теплообменные поверхности у данного аппарата выполнены в виде каркаса шатрового типа из труб Ø 25×2,5. Трубные секции (12 шт.) соединяются с помощью 2 - входных, 1 — выходной. Вся эта трубная конструкция образует трех коллекторов: свод топки, высота которой составляет 570 мм. Сжигание топлива осуществляется на колосниковой решетке. Обмуровка топочного пространства и выходного газохода выполнена из шамотного кирпича. Габариты котла составляют *a*×*b*×*h* = 1200×1000×900 мм.

Исследуемый аппарат является непромышленным образцом. На него отсутствовали нормативные эксплуатационные документы: паспорт, техническое описание, руководство по монтажу и эксплуатации. У производителя отсутствовала конструкторская документация на котел

котлы КВ-400/95Т и КВ-750/95Т «Белоозерский энергомеханический завод»

- Котлы БЭМЗ относятся к новому поколению отечественного котельного оборудования
- корпусная компоновка, полная заводская готовность, возможность полной комплектации, включая системы автоматики и вспомогательного оборудования.
- Данный тип оборудования по организации процесса теплообмена классифицируется как газотрубный котел. В этом случае дымовые газы движутся внутри труб, обеспечивая нагрев воды в межтрубном пространстве.

котел **КСВ-0,09Т**, производства ОАО «Брестсельмаш»

- Котел предназначен для сжигания твердых видов топлива: уголь, дрова, торфобрикет.
- ручная загрузка топлива, его сжигание осуществляется на колосниковой решетке.
- По другим признакам аппарат классифицируется следующим образом: котел стальной, газотрубный, блочной компоновки.
- Поставляется в полной заводской комплектации
- Отличительной особенностью конструкции является наличие турбулизаторов внутри труб
- Габариты котла (a×b×h)
 1185×900×1600, масса 900 кг.
- установленная мощность 90 кВт

КВ-Р-0,3 НПП «Белкотломаш»

- Водогрейный котел КВ-Р-0,3, установленная мощность 300 кВт.
- Предназначен для сжигания твердых видов топлива: уголь, дрова, торф. Используется ручная загрузка топлива,
- Сжигание осуществляется на колосниковой решетке при достаточно большом объеме топочного пространства.
- По другим признакам аппарат классифицируется: котел стальной, водотрубный, блочной компоновки.
- Поставляется в полной заводской комплектации.
- По уходящим газам в аппарате реализуется трехходовая схема их движения при развитых поверхностях теплообмена.
- Габариты котла (a×b×h) 1840×1150×2385 мм, масса 2000 кг.

Основные технические характеристики исследуемых водогрейных котлов

Наименование производителя	Тип котла	Номинальная производитель ность на расчетном топливе, МВт	Поверхность теплообмена (удельная поверхность), м ² (м ² /МВт)	Достигнутая производитель ность на местном виде топлива, МВт (% номинал)	Декларируе мый К.П.Д. на расчетном топливе, %	Достигнут К.П.Д. на местом виде топлива, %
ОАО «Минский завод отопительного оборудования»	КВ-0,266К	0,266	20,8 (78)	0,200 (75)	68	43
	КВ-0,389К*	0,389	30,4 (78)	0,310 (80)	68	66
	КВ-0,512К	0,512	40,0 (78)	0,320 (63)	68	47
РУПП «Белоозерский энергомеханический завод», г. Белоозерск	KB-400/95T	0,4	12,06 (30)	0,175 (44)	75	66
	KB-750/95T	0,6	17,7 (30)	0,160 (27)	75	62
РУПГЗ «Коммунальник», г. Гомель	KBT-0,63	0,63	62 (97)	0,210 (33)	80	56
	KBT-1,0	1,0	68 (68)	0,375 (38)	80	60
ОАО «Брестсельмаш», г. Брест	КСВ-0,09Т	0,09	7,0 (78)	0,076 (84)	80	57
НПП «Белкотломаш», г. Бешенковичи	КВ-Р-0,3	0,3	20,3 (68)	0,220 (73)	84	77
СПК им. Дзержинского	**	-	-	0.02	-	41

Заключение

- Перевод испытанных образцов котельного оборудования в условиях реальных объектов теплоснабжения на местные виды приведет к снижению теплопроизводительности и коэффициента полезного действия. При этом экологические показатели по выбросам в атмосферу вредных веществ при правильной наладке оборудования не выходят за пределы установленных норм.
- Из всех испытанных образцов оборудования) можно рекомендовать котлы, произведенные в НПП «Белкотломан». Перспективными для сжигания местных видов топлив является также корпусные котлы Белоозерского энергомеханического завода при внесении определенных доработок в конструкцию топки и компоновки и, возможно, увеличения конвективных поверхностей нагрева. Для теплоснабжения малых объектов (больницы, школы, магазины и др.) может быть рекомендован котел ОАО «Брестсельман». Все перечисленные котлы поставляются в полной заводской готовности и компонуются необходимым вспомогательным оборудованием.
- Нельзя сбрасывать со счетов модернизированный чугунный котел «Минск-1» (ОАО «Минский завод отопительного оборудования»). К его преимуществам следует отнести низкую цену, долговечность и устойчивость к коррозии и отложениям солей жесткости. В случае установки по тракту дымовых газов дополнительного конвективного теплообменника возможно улучшение его показателей по эффективности сжигания топлива.
- Более жесткие требования должны предъявляться к качеству проектных и монтажных работ при модернизации котельных и их переводу на местные виды топлива. Особое внимание должно быть уделено эффективному устройству трактов уходящих газов, в том числе дымовой трубы и правильному подбору тягодутьевых машин.
- Для обеспечения конкурентоспособности отечественного оборудования считаем необходимым организацию в системе Национальной академии наук центра по сертификации котельного оборудования. На базе имеющихся теплофизических установок возможно создание специализированного стенда по испытанию котлов. Наличие испытательной базы и привлечение высококвалифицированного персонала ускорит модернизацию и разработку высокоэффективного котельного оборудования