

КИСЛОТЫ

 H_2SO_4 HCI H_3PO_4 H_2SiO_3

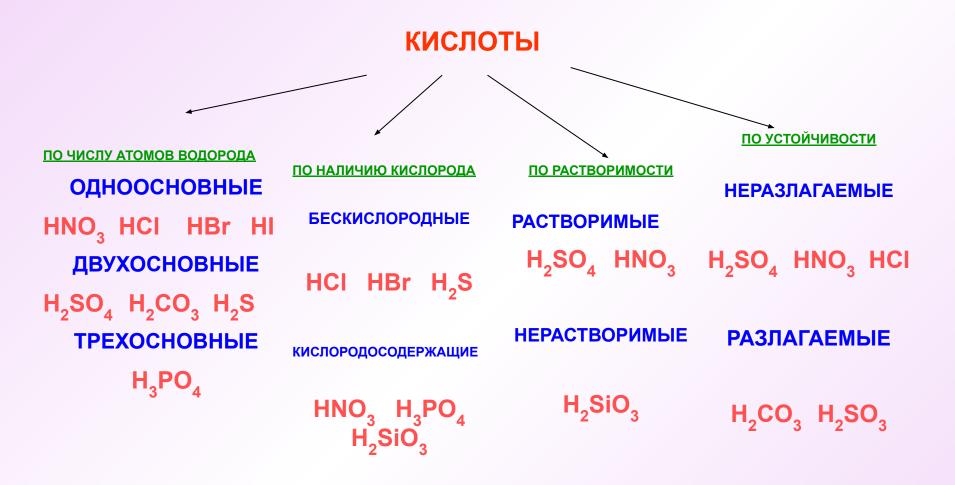
Название кислоты	Формула кислоты	Кислотный остаток	Заряд остатка	Название остатка
серная	H ₂ SO ₄	SO ₄	2 -	СУЛЬФАТ
СОЛЯНАЯ	HCI	CI	1 -	ХЛОРИД
ФОСФОРНАЯ	H ₃ PO ₄	PO ₄	3 -	ФОСФАТ
RAHTOEA	HNO ₃	NO ₃	1 -	НИТРАТ
УГОЛЬНАЯ	H ₂ CO ₃	CO ₃	2 -	КАРБОНАТ

КИСЛОТЫ – ЭТО ВЕЩЕСТВА, СОСТОЯЩИЕ ИЗ АТОМОВ ВОДОРОДА И КИСЛОТНОГО ОСТАТКА.

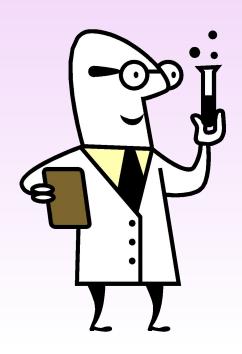
КИСЛОТЫ – ЭТО ВЕЩЕСТВА, БОЛЬШИНСТВО КОТОРЫХ ИМЕЕТ КИСЛЫЙ ВКУС. Индикатор «указатель» (латинск.) – вещество, которое служит для распознавания среды раствора.

Различают <u>нейтральную, кислую, шелочную</u> среду. Благодаря наличию атомов водорода, кислоты имеют кислую среду.

Индикатор	Нейтральная	Кислая
	среда	среда
ЛАКМУС	ФИОЛЕТОВЫЙ	КРАСНЫЙ
МЕТИЛОРАНЖ	ОРАНЖЕВЫЙ	КРАСНЫЙ
ФЕНОЛФТАЛЕИН	БЕСЦВЕТНЫЙ	БЕСЦВЕТНЫЙ


ПРАВИЛА, КОТОРЫЕ НАДО СОБЛЮДАТЬ ПРИ РАСТВОРЕНИИ КИСЛОТ.

- Налей в стакан воду.
- Тонкой струйкой влей в нее кислоту.
- Осторожно перемешай раствор.



ОСТОРОЖНО, ОПАСНО!!!

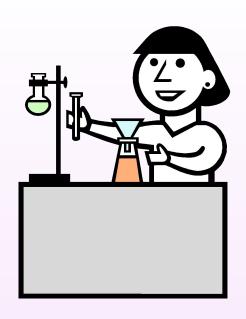
ПРЕДЛАГАЕМАЯ КЛАССИФИКАЦИЯ НЕ ЕДИНСТВЕННАЯ

КАК ПОЛУЧИТЬ КИСЛОТЫ?

Оксид неметалла + вода

$$\bullet SO_3 + H_2O = H_2SO_4$$

$$P_2O_5 + 3H_2O = 2H_3PO_4$$


Соль + кислота (сильная)

 $\cdot Na_2SiO_3 + H_2SO_4 = Na_2SO_4 + H_2SiO_3$

Водород + неметалл --> растворение в воде

 $• H_2 + CI_2 = 2HCI$, а затем растворение

СВОЙСТВА

ВЗАИМОДЕЙСТВИЕ С МЕТАЛЛАМИ:

•2HCl + Fe =
$$FeCl_2 + H_2$$

Атомы металлов окисляются, а ионы водорода восстанавливаются. Только активные металлы вытесняют его из кислот.

ВЗАИМОДЕЙСТВИЕ С ОСНОВНЫМИ ОКСИДАМИ, ОСНОВАНИЯМИ, СОЛЯМИ:

$$\cdot H_2SO_4 + CuO = CuSO_4 + H_2O$$

 $\cdot H_2SO_4 + 2KOH = K_2SO_4 + 2H_2O$
 $\cdot H_2SO_4 + K_2SiO_3 = H_2SiO_3 + K_2SO_4$

ПОЗНАКОМИМСЯ С ВАЖНЕЙШИМИ ИЗ КИСЛОТ ...

КАКИЕ ЭТО КИСЛОТЫ?

ЧТО ТЫ О НИХ ЗНАЕШЬ?

СЕРНАЯ КИСЛОТА

Молекулярная и структурная формулы

Серная кислота – тяжелая бесцветная маслянистая жидкость. Крайне гигроскопична. Поглощает влагу с выделением большого количества теплоты, поэтому нельзя воду приливать к концентрированной серной кислоте.

Серная кислота обугливает сахар, бумагу, дерево и т.д., отнимая от них элементы воды.

$$C_{12}H_{22}O_{11} + nH_2SO_4 = 12C + nH_2SO_4*11H_2O$$

Концентрированная серная кислота при обычной температуре не реагирует со многими металлами (Al, Cr, Fe,)

При нагревании она реагирует почти со всеми металлами, кроме Au, Pt и др, но при этом никогда не образуется водород. Она выступает как окислитель, сама обычно восстанавливается до SO₂

$$Cu + 2H_2SO_4 = CuSO_4 + SO_2 + 2H_2O$$

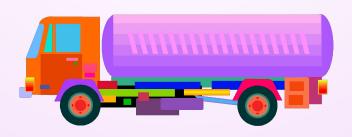
Может реакция приходить и следующим образом:

$$4 \text{ Zn} + 5 \text{H}_2 \text{SO}_4 = 4 \text{ ZnSO}_4 + \text{H}_2 \text{S} + 4 \text{H}_2 \text{O}$$

Концентрированная серная кислота вытесняет другие кислоты из из йей:

$$2 \text{ NaCl} + \text{H}_2 \text{SO}_4 = \text{Na}_2 \text{SO}_4 + 2 \text{HCl}$$

ПРИМЕНЕНИЕ СЕРНОЙ КИСЛОТЫ



АЗОТНАЯ КИСЛОТА.

 Φ ОРМУЛА - $\frac{\mathsf{HNO}_3}{\mathsf{HNO}_3}$

Азотная кислота – бесцветная жидкость, которая «дымится» на воздухе. При хранении на свету концентрированная азотная кислота желтеет, так как частично разлагается с образованием бурого газа NO₂:

$$4 \text{ HNO}_3 = 2 \text{ H}_2 \text{O} + 4 \text{ NO}_2 + \text{O}_2$$

Азотная кислота проявляет все типичные свойства кислот, но вот с металлами она ведет себя по – особому – ни один из металлов не вытесняет из азотной кислоты водород. Это объясняется тем, что азотная кислота является сильным окислителем, в ней азот имеет максимальную степень окисления + 5. Именно он и будет восстанавливаться при взаимодействии с металлами:

$$Cu + 4 HNO_{3(KOHUEHTP)} = Cu(NO_3) + 2NO_2 + 2H_2O$$

3 $Cu + 8HNO_{3(PA3БABЛ)} = 3Cu(NO_3) + 2 NO + 4 H_2O$

Железо и алюминий не реагируют с концентрированной азотной кислотой, поэтому ее можно перевозить в стальных и алюминиевых цистернах.

Соли азотной кислоты натрия, калия, кальция и аммония называются селитрами. Они при нагревании разлагаются с выделением кислорода, поэтому, применяются в пиротехнике. Селитры также применяются как

хорошие азотные удобрения.

ОСУЩЕСТВИТЬ ПРЕВРАЩЕНИЯ:

 $\bullet N_2$ NO NO₂ HNO₃ NaNO₃ NaNO₂

 $\bullet S$ SO_2 SO_3 H_2SO_4 Na_2SO_4 $BaSO_4$

•H₂—, HCI _, KCI _, HCI _, AgCI

Η,

ЭТО ИНТЕРЕСНО ЗНАТЬ

«Царская водка» - смесь концентрированных азотной и соляной кислот в соотношении 1: 3

Плавиковая кислота (HF) называется так потому, что растворяет стекло.

Самая сильная кислота – хлорная (НСІО4)

Соляная кислота (HCI) – содержится в желудке и выполняет две функции: дезинфицирует большую часть микробов и помогает переваривать пищу.

Раствор угольной кислоты – это лимонад, который мы пьем.

Конторский клей – это соль кремниевой кислоты Na_2SiO_3

