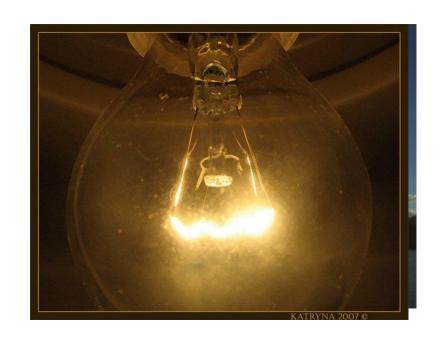
Инфракрасное (ИК) излучение

Частотный диапазон ИК излучения

 $3.10^{11} - 4.10^{14}$ Гц

История открытия

ИК излучение было обнаружено английским астрономом и физиком Уильямом Гершелем в 1800 году.


• • • История открытия

Расщепив солнечный свет призмой, Гершель поместил термометр сразу за красной полосой видимого спектра и обнаружил, что температура термометра повышается. Следовательно, на термометр воздействует излучение, не доступное человеческому взгляду.

Источники ИК излучения

ИК волны излучают нагретые тела, молекулы которых движутся интенсивно. Это излучение называют тепловым.

Основная часть NHOB DAK BACTOM B динфракрасном В**ФРИДИВОВЕТСЯ** В виде тепла. КПД этих ламп только15 %.

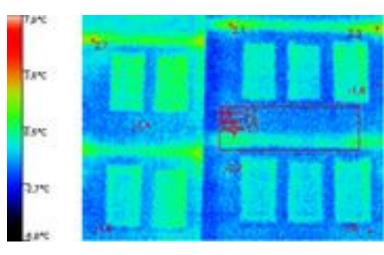
В приборах ночного видения:

- 🛮 биноклях,
- **очках**,
- прицелах для стрелкового оружия,
- ночных фото- и видеокамеры.

Здесь невидимое глазом инфракрасное изображение объекта преобразуется в видимое.

Тепловизор — устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее как цветовое поле, где определённой температуре соответствует определённый цвет.

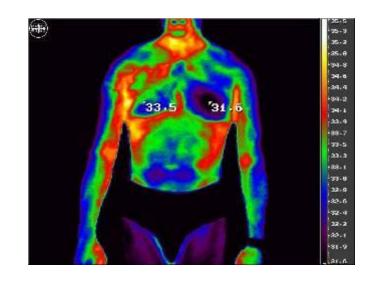
Термограмма — изображения в инфракрасных лучах, показывающего картину распределения температурных полей.


Тепловизоры применяют на предприятиях, где необходим контроль за тепловым состоянием объектов, и в организациях, занимающихся поиском неисправностей сетей различного назначения. Так, сканирование тепловизором может показать место отхода

контактов в системах

электропроводки.

Тепловизоры используют в строительстве при оценке теплоизоляционных свойств конструкций. С их помощью можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.


Тепловизионный снимок кирпичного фасада для оценки потерь тепла

Инфракрасное излучение применяется в медицине, т.к. оказывает

болеутоляющее, антиспазматическое, противовоспалительное, циркуляторное, стимулирующее и отвлекающее действие.

Термограммы используют в медицине для диагностики заболеваний. Так, инфракрасные снимки вен позволяют обнаруживать места закупорки сосудов, места локализации тромбов или **злокачественных** опухолей, даже если их температура превышает окружающую температуру на сотые доли градуса.

Термограмма тела человека

Для сушки лакокрасочных покрытий, овощей, фруктов

Преимущества:

- Быстрый нагрев изделий и материалов до заданной температуры,
- Небольшая длительность ИКсушки для ряда лакокрасочных материалов по сравнению с конвективным способом сушки;
- Возможность нагрева части изделия (зонный нагрев)

Дистанционное управление телевизором или видеомагнитофоном осуществляется с помощью ИК излучения. В пультах дистанционного управления пучок инфракрасного излучения испускает светодиод.

Ультрафиолетовое (УФ) излучение

• • • Частотный диапазон УФ излучения

 $8 \cdot 10^{-14} - 8 \cdot 10^{-16}$ Гц

История открытия

Немецкий физик Иоганн Вильгельм Риттер в 1801году обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Открытое излучение было названо ультрафиолетовым.

• • • История открытия

В том же году УФ излучение было обнаружено английским ученым У. Волластоном.

Источники УФ излучения

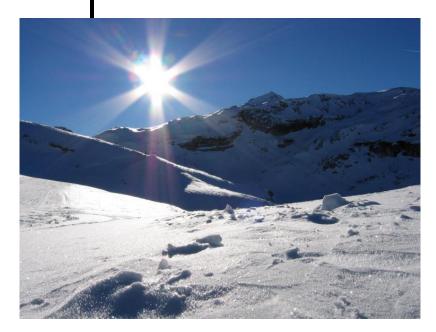
Тела, нагретые до температуры выше 3 000 ° C.

Эзветриния для сварки металлических деталей.

Биологическое действие УФ излучения

Разрушает сетчатку глаза, вызывает ожоги кожи и рак кожи.

Способы защиты



Стеклянные очки защищают глаза

Крем от загара

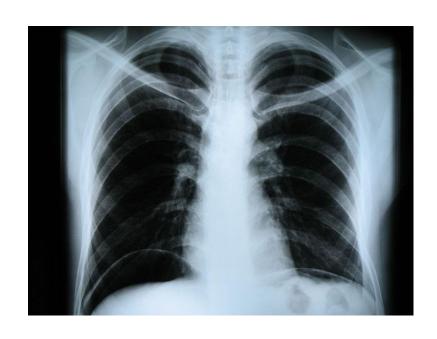
Особенности УФ излучения

До 90 % этого излучения поглощается озоном атмосферы. С каждым увеличением высоты на 1000 м уровень УФ возрастает на 12 %

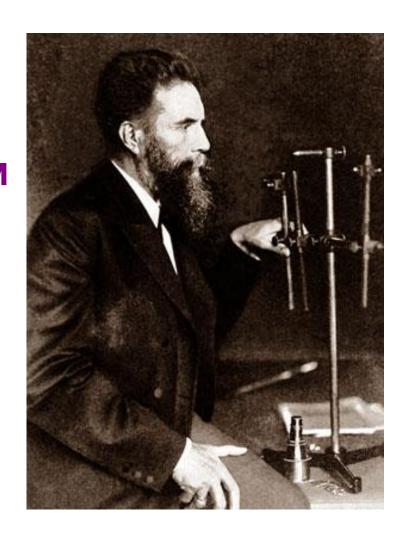
Полезные свойства УФ излучения

- Попадая на кожу вызывает образование защитного пигмента – загара.
- Способствует образованию витаминов группы Д
- Вызывает гибель болезнетворных бактерий

Использование невидимых УФ-красок для защиты банковских карт и денежных знаков от подделки. На карту наносят невидимые в обычном свете изображения, элементы дизайна или делают светящейся в УФ-лучах всю карту.


Рентгеновское излучение

Частотный диапазон рентгеновского излучения


 $3.10^{16} - 3 \cdot 10^{20}$ Гц

История открытия

Данное излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном. В 1901 за это открытие он первый среди физиков был удостоен Нобелевской премии.

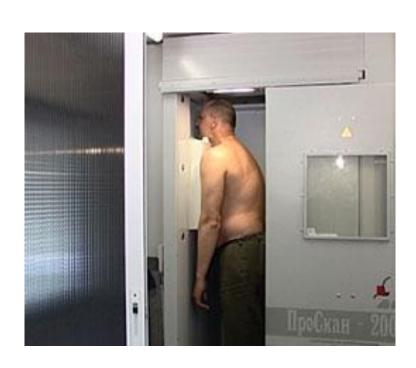
Источники рентгеновского излучения

- Свободные электроны движущиеся с большим ускорением.
- Электроны внутренних оболочек атомов, изменяющие свои состояния.

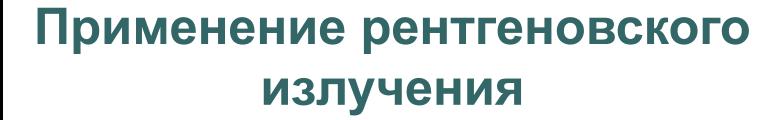
Рентгеновская **Зрубла**н и **Услартичел** и заряженных частиц, радиоактивный распад ядер

Свойства рентгеновского излучения

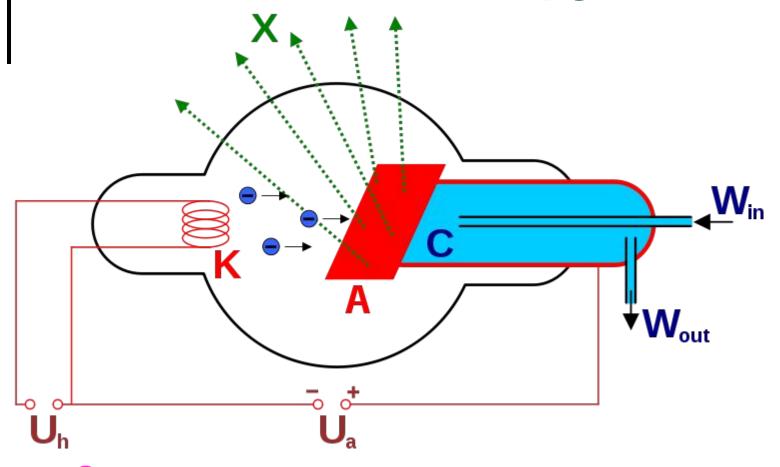
- Большая проникающая способность
- Высокая химическая активность
- Является ионизирующим, вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.
- Вызывает у некоторых веществ свечение (флюоресценцию)



Рентгенография - исследование внутренней структуры объектов, которые проецируются при помощи рентгеновских лучей на специальную плёнку или бумагу.

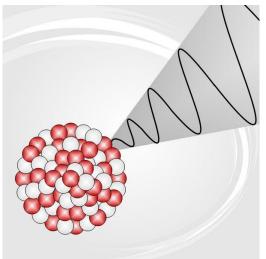


Флюорография - исследование, заключающееся в фотографировании флюоресцентного экрана, на который спроецировано рентгенологическое изображение.



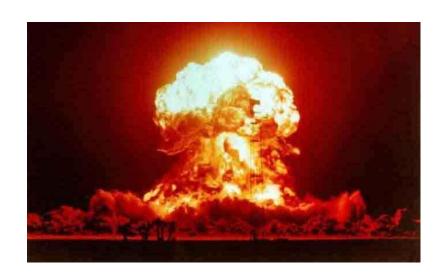
- Дефектоскопия выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения
- Рентгеноструктурный анализ исследование внутренней структуры кристаллов и сложных молекул

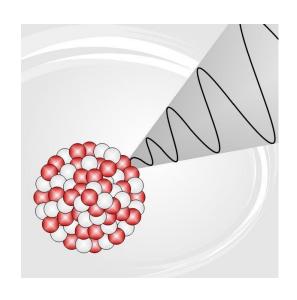
Рентгеновская трубка

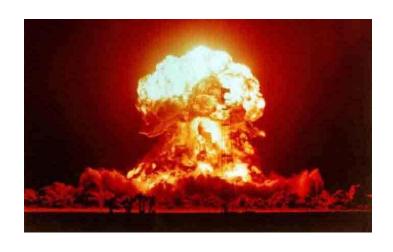


С — теплоотвод,

Win — впуск водяного охлаждения,

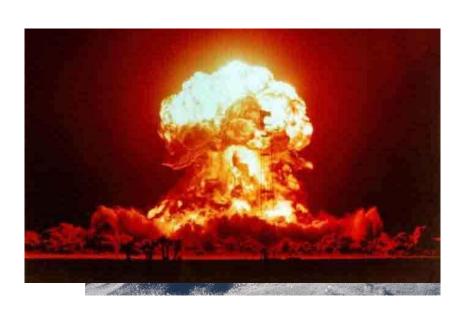

Wout — выпуск водяного охлаждения.


Гамма- излучение



• • • Частотный диапазон гамма - излучения

Частота больше 3 · 10 ²⁰ Гц


История открытия

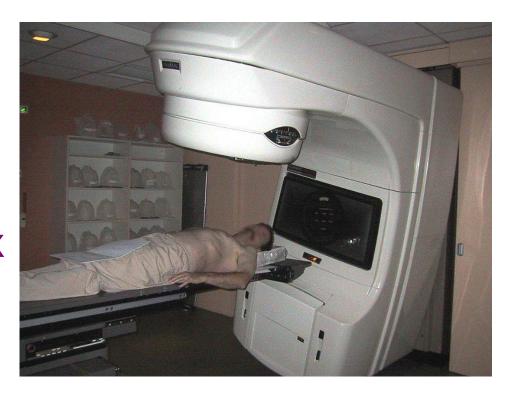
Это излучения открыто французским ученым Полем Вилларом в 1900 году при изучении излучения радия

Источники гаммаизлучения

- Атомные ядра, изменяющие энергетическое состояние.
- Ускоренно движущиеся заряженные частицы

Здерные Звезды, реакции, гапактики радиоактивный распад ядер

• • Свойства гамма-излучения


- Большая проникающая способность
- Высокая химическая активность
- Является ионизирующим, вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.

Применение гаммаизлучения

Дефектоскопия изделий просвечиванием ү-лучами. Радиационное изображение дефекта преобразуют в радиографический снимок, электрический сигнал или световое изображение на экране прибора

Применение гаммаизлучения

Радиотерапия лечение гамма излучением в основном злокачественных опухолей

1.Смесь видимых электромагнитных волн называется..... Наименьшей частотой в видимом диапазоне обладает..... свет

2. Расположите волны в порядке убывания частоты1. Рентгеновское

- 1. Рентгеновское излучение
- 2. Гамма-излучение
- 3. Радиоволны
- 4. Видимое излучение
- 5. Инфракрасное излучение

3.Какой вид излучения обладает наибольшей энергией?

- 1. Инфракрасное излучение
- 2. Радиоволны
- з. Гамма-излучение
- 4. Ультрафиолетовое излучение

- • Является излучение с длинам волн в диапазоне
 - 1. 770 HM- 1 MM
 - 2. 380 нм -770 нм
 - 3. 10^{-3} HM 10 HM
 - 4. Менее 10 ⁻³ нм

5. Какие из излучений используются для дефектоскопии?

- А. Ультрафиолетовое излучение
- Б. Гамма-излучение
- В. Видимое излучение
- Г. Радиоволны
- Д. Рентгеновское излучение

• • • 6.Выберите волны с наименьшей частотой

- 1. Инфракрасное излучение Солнца
- 2. Ультрафиолетовое излучение Солнца
- 3. Гамма излучение радиоактивного препарата
- 4. Излучение антенны радиопередатчика

7. Расположите в порядке возрастания длины волны

- 1. Инфракрасное излучение Солнца
- 2. Рентгеновское излучение
- з. Излучение СВЧ-печей

Ответы

- 1. Белым светом, красный свет 2. 2,1,4,5,3 (Гамма-излучение, рентгеновское излучение, видимое излучение, инфракрасное, радиоволны.
 - з. 3 (Гамма-излучение)
 - 4. 2 (380 нм -770 нм)
 - **5. Б**,Д

Ответы

- 6. 4 Излучение антенны
- 7. 2,1,3, Рентгеновское излучение, Инфракрасное излучение Солнца, Излучение СВЧ-печей