
Министерство образования и науки Российской Федерация

ГОУ ВПО Тамбовский государственный технический университет

«ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ из растительного сырья на примере ЭКСТРАКЦИИ СЖИЖЕННЫМ ДИОКСИДОМ

УГЛЕРОДА» Автор проекта:

магистрант кафедры ПЗОС Каверина Елена Николаевна

Научный руководитель

проекта:

к.т.н., доцент Букин Александр Александрович

АКТУАЛЬНОСТЬ:

Несмотря на богатство сырьевых ресурсов в различных регионах Российской Федерации все более актуальным становится проблема рационального, комплексного использования сельскохозяйственного сырья. Существующий потенциал технических знаний позволяет обеспечить комплексную переработку и более полное использование сельскохозяйственного сырья, наряду с резким сокращением его потерь и отходов. Биологически активные вещества (БАВ), в тех или иных количествах содержащиеся в различных растениях, играют огромную роль в поддержании и стабилизации важных биохимических и физиологических процессов человеческого организма.

новизна:

Получение экологически чистых биологически активных веществ из растительного сырья, распространенного в нашем регионе, а также возможность фракционного извлечения БАВ.

ЗАДАЧИ:

- отработка экологически безопасной технологии получения СО2 экстрактов из растительного сырья, распространенного в нашем регионе;
- провести реконструкцию оборудования, используемого для получения экстрактов;
- разработка технологии фракционного экстрагирования биологически активных веществ из растительного сырья сжиженным углекислым газом.

ТЕХНИЧЕСКАЯ НОВИЗНА ПРОЕКТА

Изменение конструкции экстракционной установки позволит усовершенствовать технологию: перейти от периодического процесса к полунепрерывному

Таблица 1

Существующая технология	Предлагаемая технология
Периодичность процесса	Сокращение времени процесса за счёт уменьшения времени простоев (1,5-3 часа)
Большое время простоя оборудования при перезагрузке экстракторов (3-5 часов)	Интенсификация процесса за счёт увеличения поверхности массообмена
Низкая скорость экстракции связанная с неразвитой поверхностью массообмена	Увеличение выхода целевого продукта до 50%
	Получение целевого продукта с селективными свойствами
	Снижение энергозатрат

РЕЗУЛЬТАТЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

В качестве сырья для проведения исследований использовалось растение под названием тысячелистник обыкновенный, имеющий широкое распространение на территории Тамбовской области.

Taon	ица	4
	1111	

№ Ki	Величина Rf	Примечания, пояснения
Таблица 2		
		, 1

К, – ацетонитрил, компоненты отчётливо делятся на отдельные

деление по ширине

 $R_{f1} = 0.55 R_{f2} = 0.57$ $R_{f3} = 0.60 \quad R_{f4} = 0.61$

пятна разделённые по высоте и ширине пластины

- $R_{\rm fl} = 0.60$
 - - К₂ тетрагидрофуран, единственное пятно с сильно вытянутым **«XBOCTOM»**

Этот экстракт содержит: терпены, жирные кислоты, фитостерины.

- $R_{f1} = 0.85$ $R_{f2} = 0.90$ $R_{f3} = 0.90$ $R_{f4} = 0.94$
- $R_{\rm fl} = 0.50$
- $R_{f1} = 0.03$ $R_{f2} = 0.12$ $R_{f3} = 0.25$ $R_{f4} = R_{f5} = R_{f6} = 0.43$ $R_{f7} = 0.62$
- К4 гептан, растворитель не разделяет компоненты образца К5 – хлороформ, четкое разделение пятен компонентов по высоте и ширине пластины

К3 – уксусная кислота, компоненты движутся единым фронтом,

SWOT – АНАЛИЗ ПРОЕКТА

Таблица 3

Низкие транспортные издержки в силу небольших	Сложности в оформлении ТУ и получения
размеров готовой продукции.	сертификатов.
Доступность и дешевизна сырья.	Сложность в преодолении заинтересованности
Возможность создания страховых запасов сырья и	потенциальных потребителей СО ₂ -экстрактов в
готовой продукции.	применении используемых в настоящее время
	пищевых добавок (красителей, консервантов,
	ароматизаторов, усилителей вкуса и запаха).

сырья.

Возможности

Сильные стороны

Появление новых конкурентов (технологии, пищевые добавки, новое аппаратурное оформление). Неурожай с/х культур, используемых в качестве

Слабые стороны

Угрозы

Выход на новые рынки сбыта (другие регионы и страны). Возможность производства широкого ассортимента экстрактов из различных видов растительного сырья. Применение CO₂— экстрактов в различных отраслях промышленности (пищевая, фармацевтическая).

СФЕРА ПРИМЕНЕНИЯ

• Пищевая промышленность (от 50 до 200 кг в год)

Производство колбас

Консервная промышленность

Соусы

Бальзамы

• Косметическая промышленность (до 200 кг в год)

Кремы и мази Туалетная вода

Духи

• Фармацевтическая промышленность (до 100 кг в год)

Ароматерапия Бальзамы

Настои

Преимущества экстрактов:

- ярко выраженные ароматы и вкусовые качества исходного сырья; - экологически чистые продукты; - микробиологически не обсеменены и стерильны; - не содержат пестицидов и гербицидов; - не теряют своих свойств, аромата и вкуса в процессе хранения; - легко составляются в композиции.

РЫНКИ СБЫТА И КОНКУРЕНТЫ

Применение CO2-экстрактов в различных отраслях промышленности

Область применения	Доля, %
Мясная промышленность	36
Консервная промышленность	18
Рыбная промышленность	16
Косметика	15
Фармацевтическая промышленность	9
Бытовая химия	6

Основные производители CO2экстрактов в РФ:

- ОАО "Биофит" г. Нижний Новгород;
- "Провансаль" г. Томск;
- НПЦ "Экстра-Пром" г. Москва;
- НТЦ "Горо" г. Ростов;
- ООО «КАРАВАН» Краснодарский край.

Таблица	_

Второй год

Таолица 4			
Этапы реа проег		Перечень мероприятий	Объем требуемых инвестиций, руб.
<u>Первый год</u> Проведение	лабораторных	Модернизация и реконструкция лабораторной установки	52500
исследований	Отладка работы установки	52500	
		П	

экстрактов

Итого:

Отработка технологии и схемы

получения СО2 - экстрактов

Получение опытных партий экстрактов Лабораторный

конструкции СО2 - экстрактора

Подача заявки на патент (на способ)

анализ полученных Анализ рынка на предмет выявления актуальных видов экстрактов Отработка технологии фракционного экстрагирования БАВ для наиболее востребованных видов сырья Разработка опытно-промышленной

52500

52500

52500

52500

52500

52500

420000

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ РЕАЛИЗАЦИИ 9 ПРОЕКТА

Таблица 5

Показатель	Единица измерения	Значение
Себестоимость экстракта	руб за кг	1250
Объём производства	кг за год	500
Цена экстракта	руб за кг	3900
Среднегодовой доход	руб	1 950 000
Среднегодовая прибыль	руб	1 325 000
Срок окупаемости	лет	1,5

Реализация проекта позволит:

- -разработать и внедрить технологию для производства СО2- экстрактов из растительного сырья с высокой концентрацией биологически активных веществ;
- -получить экстракты с использованием экологически безопасного растворителя;
- подробно изучить состав и спрогнозировать получение новых CO₂ экстрактов с заранее заданными свойствами.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ:

- 1. Касьянов Г.И., Пехов А.В., Таран А.А. Натуральные пищевые ароматизаторы- CO_2 экстракты. М. Пищ. промышленность 1978 178 с.
- 2. Лобанов В.Г., Шубко А.С. Жирнокислотный состав СО2-экстрактов лекарственных растений.-Известия Вузов. Пищевая технология №3 2007 с. 23-24.
- 3. Кирхнер Ю., Тонкослойная хроматография, пер. с англ., М., 1981.

НАУЧНАЯ КВАЛИФИКАЦИЯ:

- 1. <u>62-ая научно-практическая конференция студентов и аспирантов</u> в МичГАУ г. Мичуринск, доклад на секции «Технология хранения и переработки продукции растениеводства»
- 2. http://innovatika.web.tstu.ru/word/konf-el/sbornik_mai_2010.docx Статья в электронной конференции, Каверина Е.Н., Букин А.А., Щербаков С.А., «Интенсификация процесса экстракции биологически активных комплексов из растительного сырья жидкой двуокисью углерода».
- 3. http://innovatika.web.tstu.ru/word/konf-el/sbornik_mai_2009.docx Статья в электронной конференции; Каверина Е. Н., Букин А. А., «Тонкослойная хроматография как метод экспресс-анализа СО₂-экстрактов и как метод подбора элюентов для высокоэффективной жидкостной хроматографии»
- 4. http://innovatika.web.tstu.ru/word/konf-el/sbornik <a href="http://innovatika.web.tstu.ru/word/konf-el/sbornik <a hre
- 5. http://innovatika.web.tstu.ru/word/konf-feb/sbornik_feb_2011.pdf II—я Международная научно-практическая конференция «Аспекты ноосферной безопасности в приоритетных направлениях деятельности человека» и публикация статьи в сборнике материалов конференции, Каверина Е. Н., Букин А. А., «Экологически безопасные технологии получения биологически активных веществ из растительного сырья на примере экстракции сжиженным диоксидом углерода»
- 6. X Международная научно-практическая конференция «Актуальные вопросы современной науки» (г. Таганрог) и публикация статьи в сборнике материалов конференции, Каверина Е. Н., Букин А. А., «Моделирование технологических процессов на примере CO₂ экстракции целевых компонентов из растительного сырья».

КОНТАКТНАЯ ИНФОРМАЦИЯ

Кафедра "Природопользование и защита окружающей среды" (профилирующая)

Адрес: ул. Мичуринская, 112

Телефон: 8 (4752) 63-03-65, 63-03-71

Факс: 8 (4752) 63-02-16.

Кафедра "Переработка полимеров и упаковочное производство" (профилирующая)

Адрес: ул. Советская, 116, к.324

Телефон: 8 (4752) 63-51-74

Факс: 8 (4752) 63-39-26.

Каверина Елена Николаевна Телефон (сот): 89202387651 e-mail: elenakaverina.88@mail.ru Букин Александр Александрович Телефон (сот): 89107561037 e-mail: buka196528@rambler.ru