Встроенные Системы

Часть 4. Шины, память, кэш, DMA

Кафедра Информатики, мат-мех СПбГУ

Copyright © 2004 Victor Vengerov vvv@oktetlabs.ru

http://www.oktetlabs.ru/~vvv/es-2004

Шина

- Шина группа проводников (сигналов), соединяющих различные устройства.
- Шина позволяет осуществлять обмен данными между устройствами.
- Обычно, шина содержит сигналы адреса, данных и управляющие сигналы.

Протокол Шины

- Соглашения о порядке обмена данными и правилах использования сигналов называются протоколом шины.
- По шине передаются дискретные сигналы.
- Состояние шины меняется дискретно во времени.

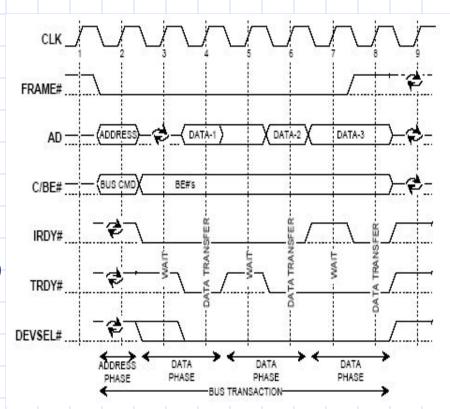
Разновидности Сигналов

- Устройства, подключенные к шине наблюдают за состоянием сигналов.
- В соответствии с протоколом, устройство управляет сигналами:
 - Активно
 - Только одно устройство может управлять данным сигналом
 - Через выход с тремя состояниями
 - В каждый момент времени сигналом управляет одно из устройств
 - Через выход с открытым коллектором
 - Несколько устройств управляют сигналом («монтажное ИЛИ»)

Мультиплексирование Адреса и Данных

 Адрес и данные могут передаваться по одним линиям. Состояние шины определяет, что передают эти линии в данный момент.

Разрядность


- Разрядность определяет количество бит адреса и данных, передаваемых по шине.
- Разрядность адреса и данных может различаться.
- Бывают 1-разрядные (последовательные) шины.

Синхронные Шины

- Изменения состояния синхронной шины привязаны к периодам тактового сигнала.
- Большинство шин синхронные.

Временная Диаграмма

Временная диаграмма специфицирует и иллюстрирует протокол шины. Временная диаграмма показывает последовательность изменений состояний во времени.

Master/Slave

- Master (инициатор) устройство, инициирующее транзакцию на шине.
- Slave устройство, отвечающее на транзакцию.
- Архитектура шины может допускать наличие одного или нескольких инициаторов.

Арбитр

- Нескольким инициаторам может потребоваться начать обмен одновременно.
- Протокол шины должен позволить принять решение: какому мастеру отдать приоритет.
- Арбитр специальное устройство, принимающее это решение.

Примеры Шинных Архитектур - PCI

- PCI Peripheral Component Interconnect
 - шина используется для подключения периферийных устройств
 - синхронная (33/66MHz)
 - с мультиплексированием адреса и данных
 - Разрядность 32/64 бита
 - Внешний арбитр
 - 3 адресных пространства:
 - Конфигурационное
 - Ввода/вывода
 - Памяти

Примеры Шинных Архитектур — I²C

- I²C Inter-Integrated Circuit
 - Последовательная шина, 2 линии:
 - SCL синхронизация
 - SDA данные

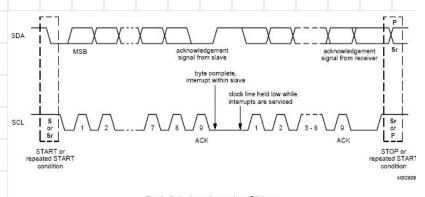


Fig.6 Data transfer on the I²C-bus.

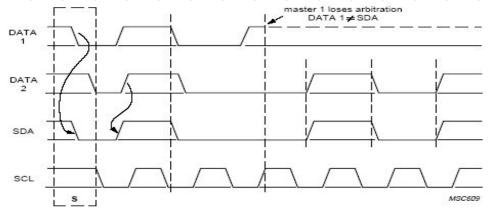
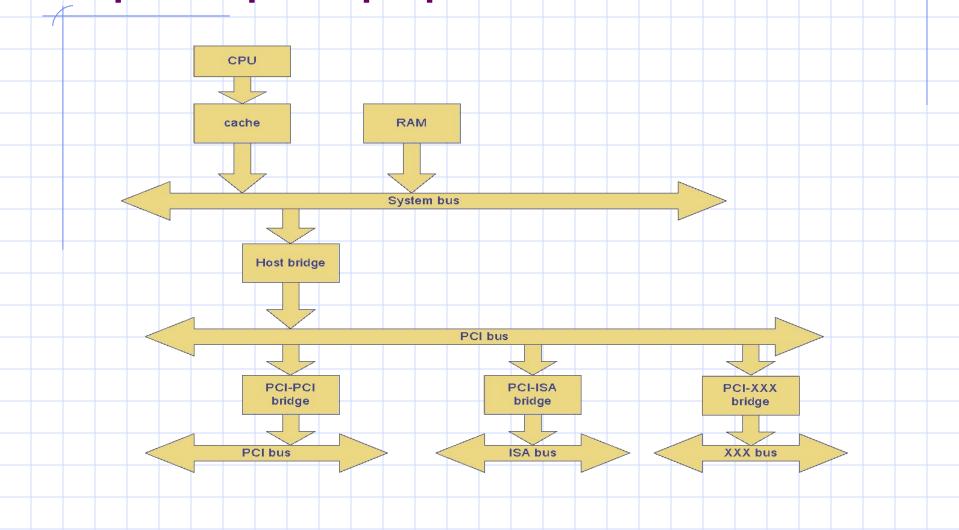


Fig.9 Arbitration procedure of two masters.

Примеры Шинных Архитектур


- VME bus
- Multibus, Multibus II
- ISA
- AMBA
- Wishbone
- Other...

- 1-Wire
- SCSI
- IDE/ATA
- USB
- AC'97
- UTOPIA
- MII

Mocт (bridge)

- Мост устройство, которое транслирует транзакции между шинами (имеющими одинаковую, родственные или различные архитектуры).
- Мосты позволяют иерархически организовывать шины.

Пример иерархии шин

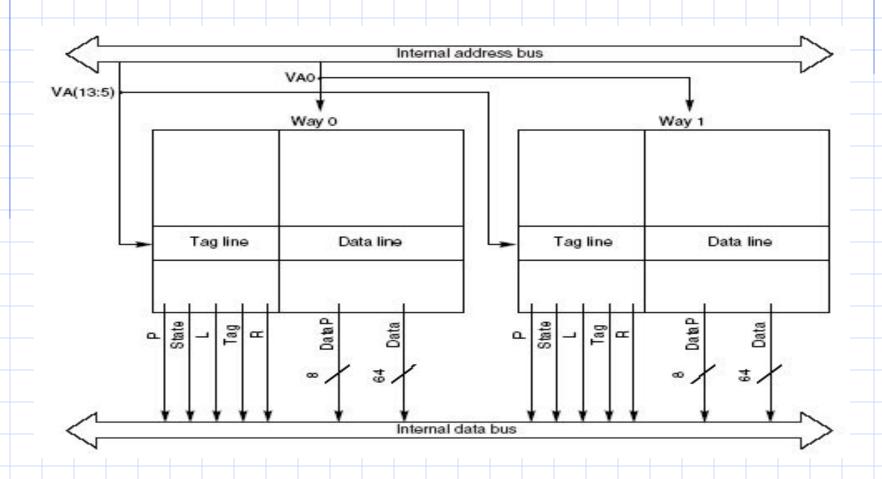
Зачем Нужны Мосты

- Интеграция разнородных шин
- Масштабирование
- Преодоление физических ограничений
- Оптимизация потоков данных

Замечание: периферийное устройство может быть встроенной системой и являться предметом нашего рассмотрения!

DMA – прямой доступ к памяти

• Устройство, осуществляющее DMA, способно производить пересылки данных между устройством и памятью без вмешательства процессора.


Чтение и Запись

- Концептуальное различие между операциями чтения и записи в память:
 - Операция чтения блокирующая. Выполняя операцию чтения, необходимо дождаться результата.
 - При записи в память, ожидание окончания записи не является обязательным (при условии сохранения последовательности операций).
 - Операции записи можно откладывать.
- Местонахождение буферов влияет на производительность!

Кэш-память

- Быстродействующая память, находящаяся между процессором и основной памятью.
- В кэш-памяти хранятся часто используемые данные (принциплокальности).
- Позволяет существенно улучшить производительность системы.
- Время работы программного кода становится фактически непредсказуемым.

Кэш – пример реализации

Рассогласование

- При осуществлении DMA доступа, содержимое кэш-памяти и основной памяти может стать рассогласованным:
 - Процессор работает с данными
 - Устройство пишет в память по тому же адресу.
- За этим надо строго следить!

Рассогласование - решения

- Каждый участок памяти управляется либо процессором, либо устройством:
 - Когда данные передаются устройству, диапазон адресов в кэш-памяти «сбрасывается» в память (flush).
 - Когда данные принимаются от устройства, диапазон адресов в кэш-памяти делается недействительным (invalidate).
- Snooping. Внешние обращения к памяти отслеживаются «аппаратно», и выравнивание кэш с основной памятью происходит автоматически.