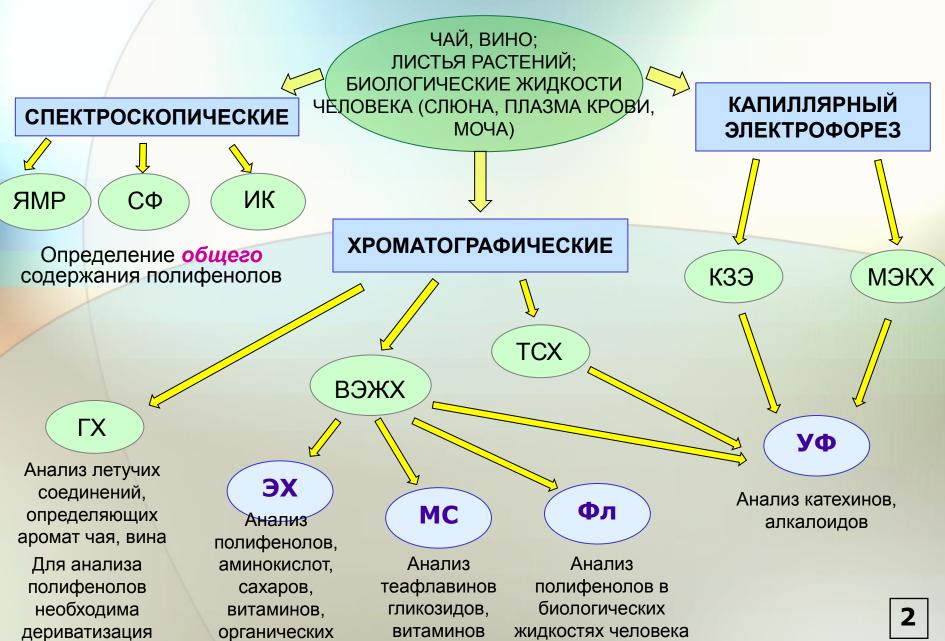
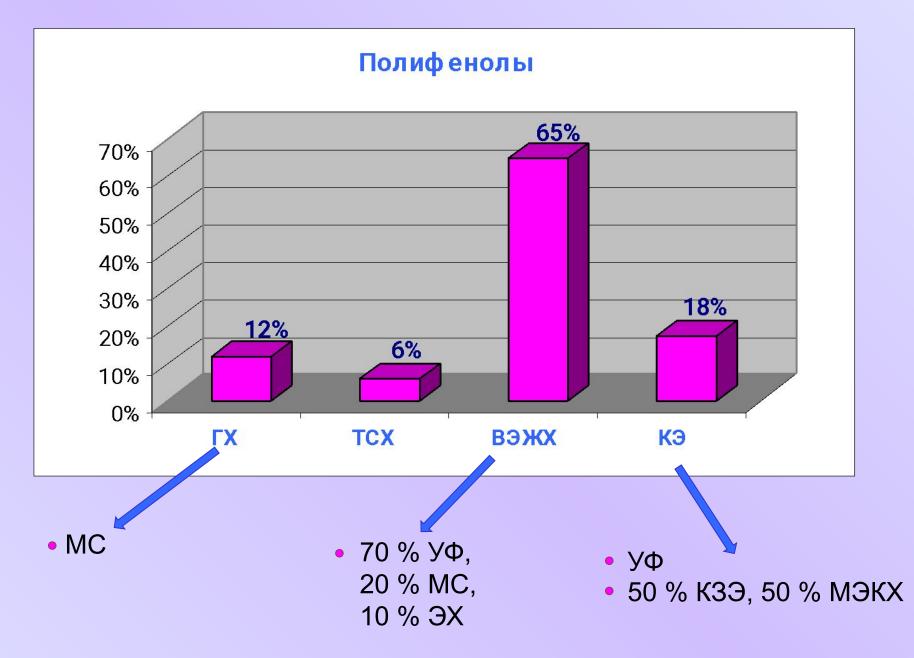
Алексеева Анна Владимировна

РАЗРАБОТКА ЭЛЕКТРОФОРЕТИЧЕСКОГО И ХРОМАТОГРАФИЧЕСКОГО СПОСОБОВ ОПРЕДЕЛЕНИЯ ПОЛИФЕНОЛОВ И КОФЕИНА В РАЗЛИЧНЫХ СОРТАХ ЗЕЛЕНОГО И ЧЕРНОГО ЧАЯ

Научные руководители: проф., д.х.н. Карцова А. А., асп. Ганжа О. В.


Важнейшие биологически активные компоненты чая


(-)-Галлокатехин галлат **((-)-EGCG)**

(-)-GCG)

кислота (Caf) (GA)

Методы анализа реальных объектов, содержащих полифенольные соединения

J. of Chromatogr. A, Talanta, Analytica Chimica Acta. 2005-2006 гг Всего: 17 статей

МЕТОД КАПИЛЛЯРНОГО ЭЛЕКТРОФОРЕЗА

Определение ионогенных и нейтральных соединений

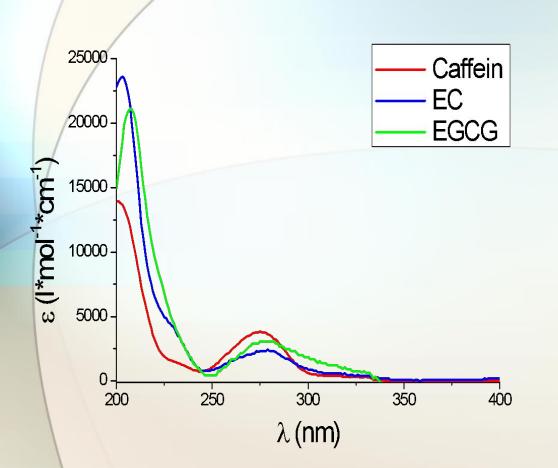
Концентрирование пробы в режиме on-line

Цель работы:

Выяснение возможностей одновременного определения полифенолов и кофеина в различных сортах чая методом капиллярного электрофореза

Поставленные задачи:

Получение спектрофотометрических характеристик полифенолов и кофеина

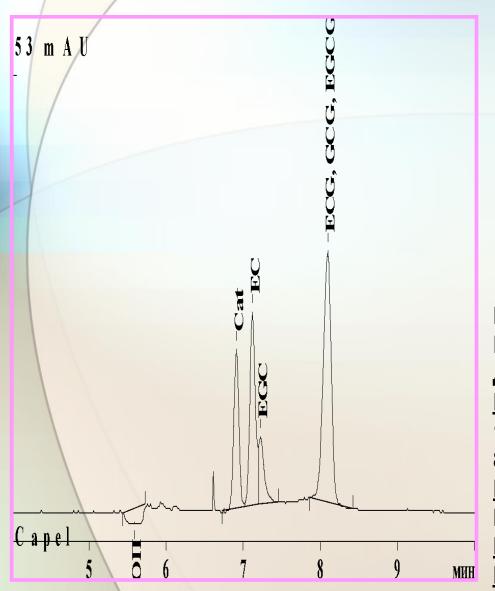

Оптимизация условий разделения модельной смеси полифенолов в режиме капиллярного <u>зонного</u> электрофореза (КЗЭ)

Выяснение возможностей мицеллярной электрокинетической хроматографии (МЭКХ) для одновременного разделения полифенолов и кофеина. Установление факторов, влияющих на селективность и эффективность разделения в этом режиме

Количественный анализ реальных объектов и получение характеристических профилей

Использование метода ОФ ВЭЖХ с УФ-детектированием как референтного для решения этой задачи

Оптимизация условий детектирования

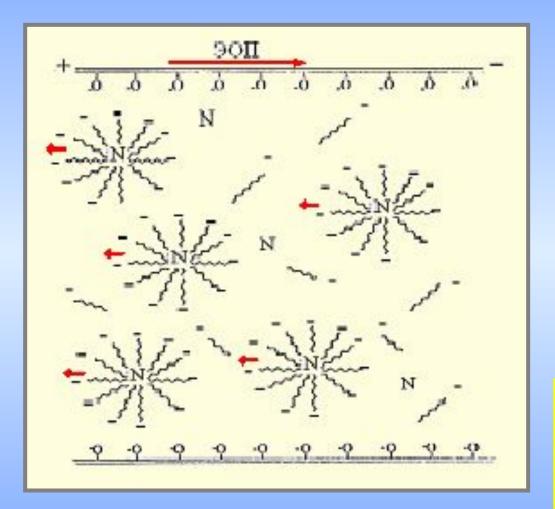

Соединение	λ, нм	ε, л·моль ⁻¹ ·см ⁻¹
Caf	200	13900
	201	13900 (max)
	275	3800 (max)
EC	200	22800
	203	23600 (max)
	279	2400(max)
EGCG	200	14900
	207	21100 (max)
	280	3100 (max)

В качестве рабочей была выбрана длина волны детектирования 200 нм

<u>Условия</u>: спектрофотометр Shimadzu UV-1700; длина оптического пути = 1 см; концентрации водных растворов Caf, EC, EGCG – 2·10⁻⁵ М

6

Электрофореграмма модельной смеси катехинов в КЗЭ

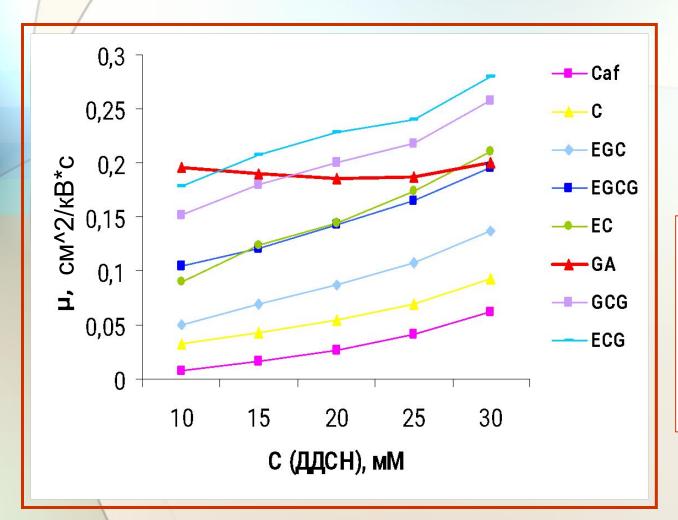

pKa: 8.64, 9.41, 11.26, 13.26

КАПЕЛЬ 105, <u>Капилляр:</u> $L_{oбщ} = 60$ см, $L_{эфф} = 50$ см, $d_{внутр} = 75$ мкм. <u>Длина волны:</u> $\lambda = 200$ нм <u>Буферный электролит:</u> 12,5 мМ тетрабората натрия (рН 9.2), 8 мМ β -циклодекстрина <u>Проба:</u> Cat, EC – по 10 мг/л, EGC, ECG, GCG, EGCG – по 20 мг/л

Ввод: 30 мбар, 10 сек

Напряжение: 20 кВ

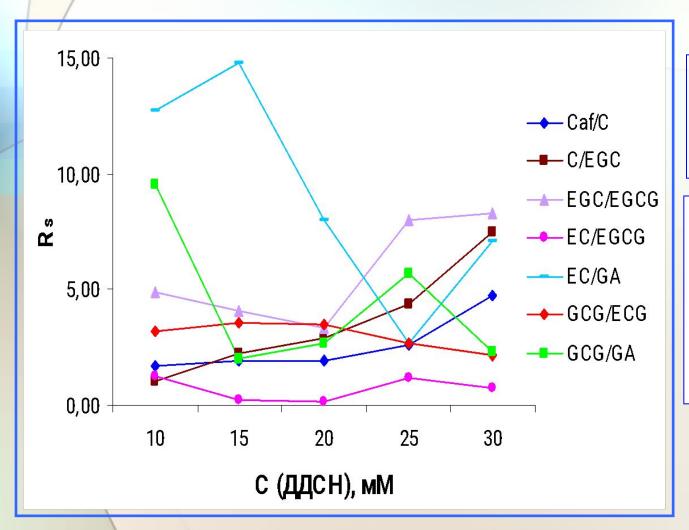
Вариант мицеллярной электрокинетической хроматографии



Мицеллы и ЭОП движутся в противоположных направлениях. Компоненты пробы распределяются между фазой раствора и мицеллярной фазой, при этом константа распределения специфична для каждого сорта молекул пробы.

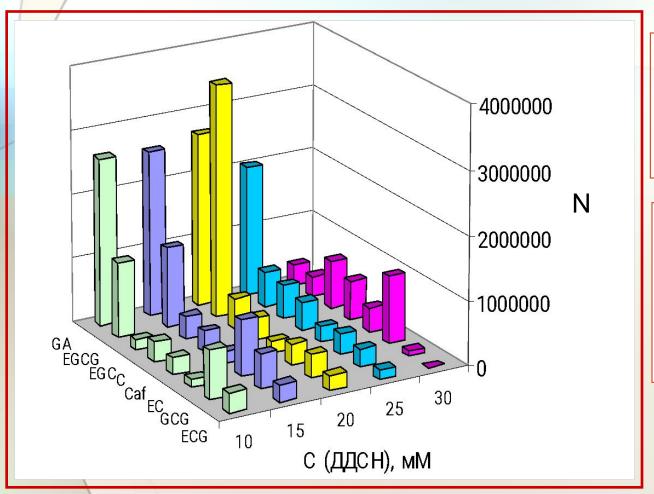
С₁₂H₂₅OSO₃⁻Na⁺ Додецилсульфат натрия

KKM = 8,3 MM


Зависимость электрофоретических подвижностей аналитов от концентрации детергента в буферном электролите

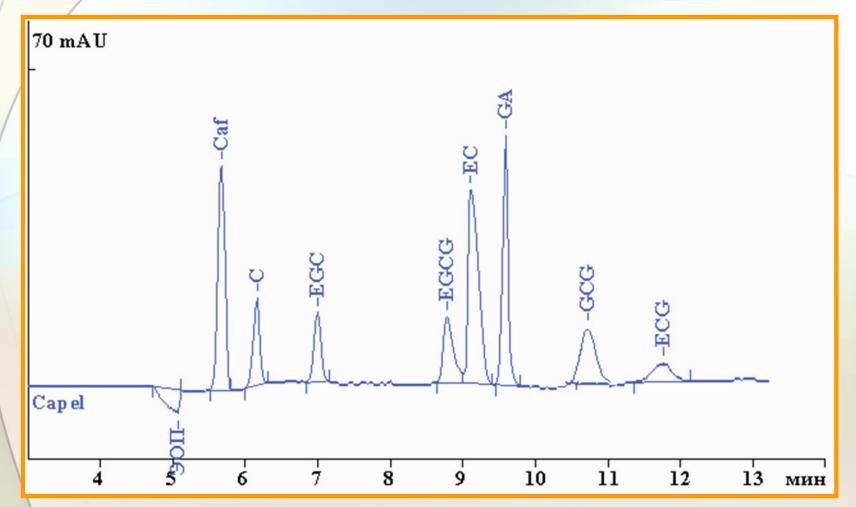
$$\mu = rac{L_{artheta}\phi \cdot L_{o}$$
биј $U \cdot t_{\mathit{MUP}}$

где L_{общ} – общая длина капилляра, см L_{эфф} – эффективная длина капилляра, см U – величина рабочего напряжения, В t_{мигр} – время миграции компонента, с

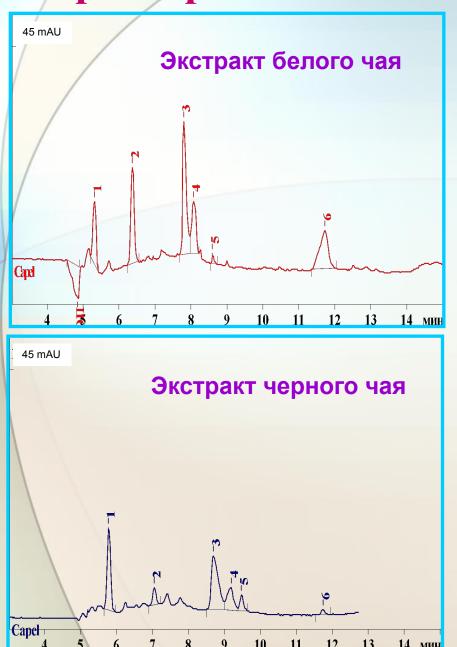

Зависимость коэффициента разрешения от концентрации детергента в буферном электролите

$$R_{s} = \frac{1,77 \cdot (t_{2} - t_{1})}{w_{1}^{0,5} + w_{2}^{0,5}}$$

где $\mathbf{t_1}$ и $\mathbf{t_2}$ — времена миграции первого и второго компонента, соответственно, мин $\mathbf{w_1}^{0,5}$ и $\mathbf{w_2}^{0,5}$ — ширина пиков на полувысоте, мин


Зависимость эффективности разделения от концентрации детергента в буферном электролите

$$N = 5,54 \cdot \left(\frac{t_R'}{w_{0.5}}\right)^2$$


где t_R — времена миграции аналита, соответственно, мин $W_{0,5}$ — ширина пика аналита на полувысоте, мин

Электрофореграмма модельной смеси катехинов, галловой кислоты и кофеина в МЭКХ

Ведущий электролит: 25 мМ фосфатный буфер pH 7,0, 25 мМ додецилсульфата натрия Проба: смесь стандартов:С, ЕС – по 25мг/л, Caf – 12,5 мг/л, EGC, ECG, GCG, EGCG, GA – по 50 мг/л Ввод: 30 мбар, 10 сек. Напряжение: 25 кВ. Длина волны: λ = 200 нм

Характеристические профили образцов чая

1 - Caf,

2 - EGC,

3 - **EGCG**,

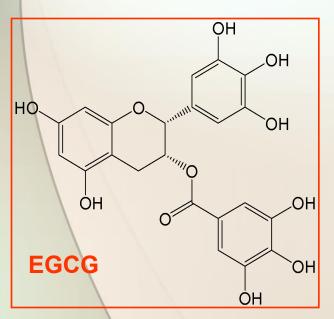
4 - EC,

5 - GA,

6 - ECG

Количественный анализ различных сортов чая

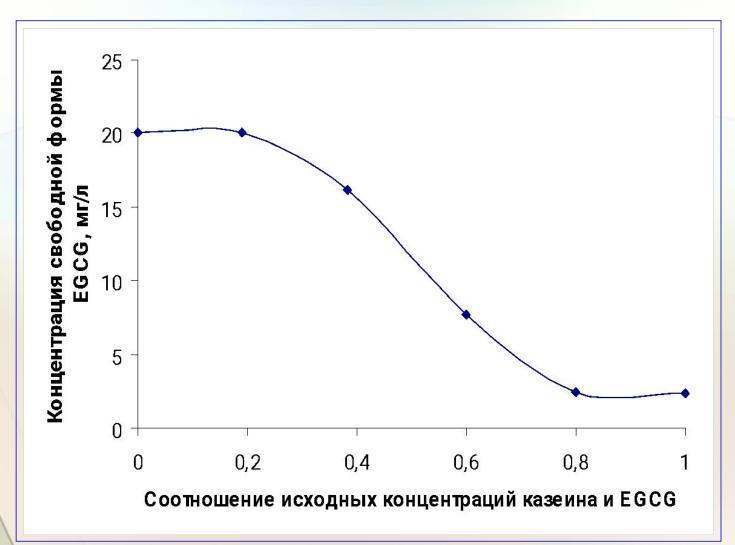
ПО 1 мкг/мл

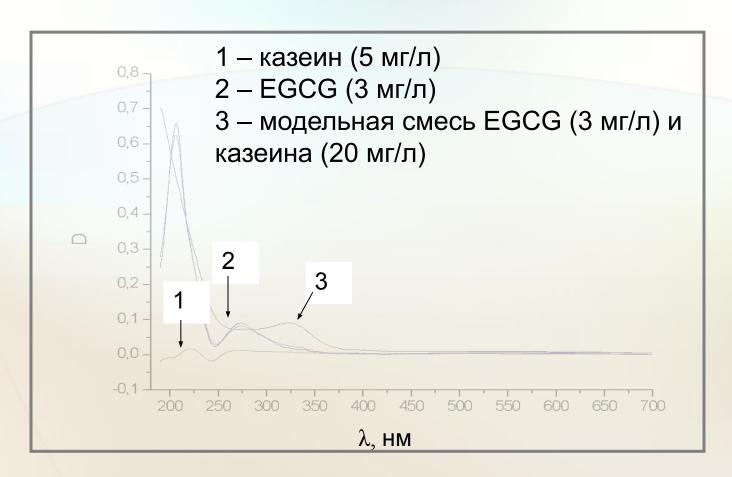

Аналит	Концентрация, % масс.				
	Белый чай	Зеленый чай	Черный чай		
Caf	$0,79 \pm 0,11$	$1,40 \pm 0,22$	$1,21 \pm 0,10$		
EGC	$1,24 \pm 0,05$	$1,58 \pm 0,10$	$0,24 \pm 0,05$		
EGCG	$1,89 \pm 0,11$	$1,45 \pm 0,10$	$1,74 \pm 0,12$		
EC	$0,37 \pm 0,05$	$0,49 \pm 0,06$	$0,26 \pm 0,05$		
GA	$0,04 \pm 0,01$	$0,07 \pm 0,03$	$0,13 \pm 0,04$		
ECG	$1,12 \pm 0,10$	$0,81\pm0,12$	$0,10\pm0,04$		

P = 0.95, n = 5

Взаимодействие полифенолов с органическими и неорганическими соединениями

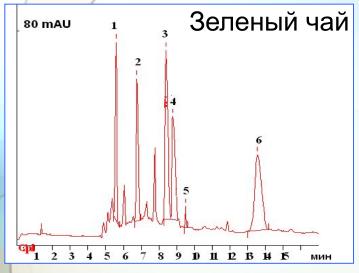
Полифенол + Казеин


Комплекс

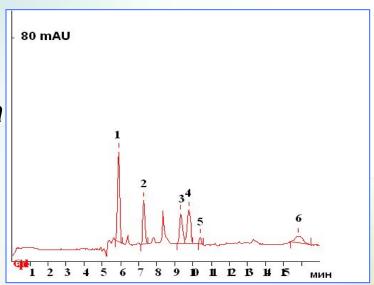

Максимальная антиоксидантная активность (потенциал окисления — 720 мВ)

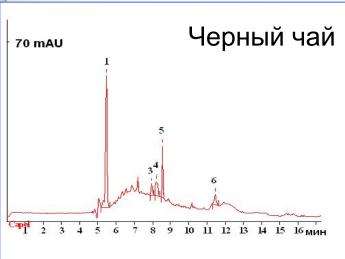
Наибольшее содержание в чае (до 40 % от общего содержания полифенолов) 1

Изменение концентрации свободной формы EGCG от мольного соотношения белок/полифенол

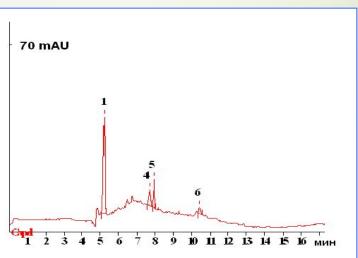


Электронные спектры поглощения эпигаллокатехин галлата, казеина и их комплекса

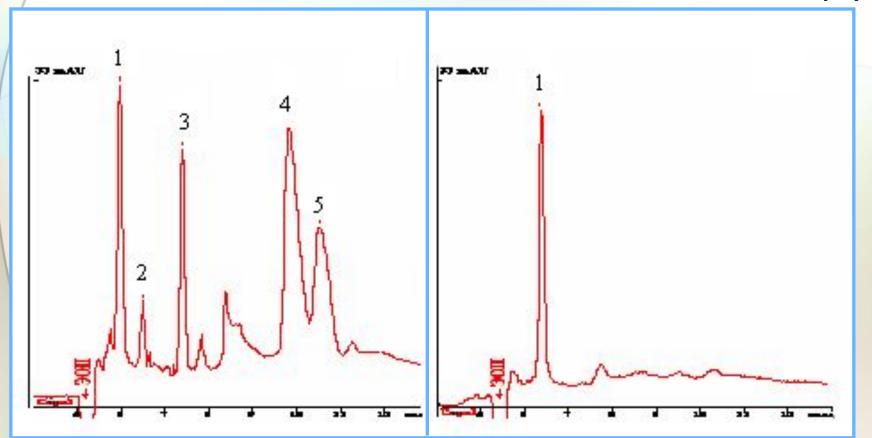



<u>Условия</u>: спектрофотометр Shimadzu UV-1700; длина оптического пути = 1 см; концентрации водных растворов Caf, EC, EGCG – 2·10⁻⁵ М

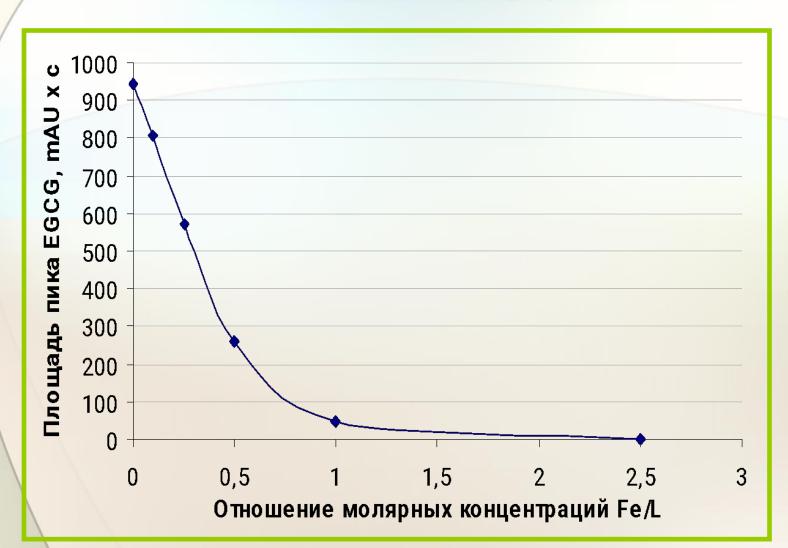
Влияние добавки молока в чай на его электрофоретический профиль



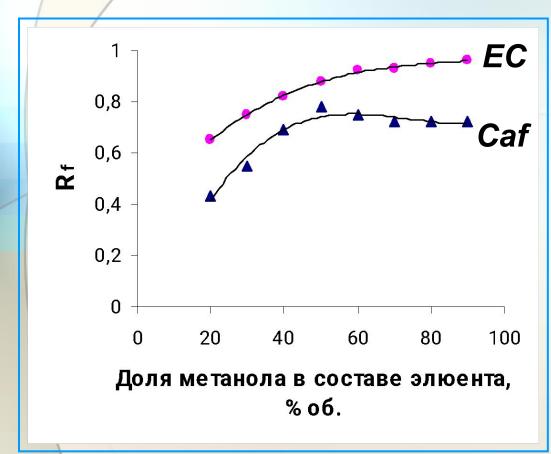
Влияние добавки в чай молока на содержание полифенолов


	Концентра	ация, масс %	Концентрация, масс %		
Аналит	Зеленый чай	Зеленый чай с добавкой 5% молока	Черный чай	Черный чай с добавкой 5% молока	
Caf	$2,08 \pm 0,19$	$1,10\pm0,09$	$1,50 \pm 0,11$	$0,95 \pm 0,09$	
EGC	$1,71\pm0,14$	$0,57 \pm 0,06$	< 0.01	< 0.01	
EGCG	$3,40\pm 0,30$	$0,55\pm 0,06$	$0,10 \pm 0,01$	< 0.01	
EC	$0,83 \pm 0,08$	$0,28 \pm 0,04$	$0,09 \pm 0,01$	$0,07 \pm 0,01$	
GA	$0,08\pm 0,02$	$0,04\pm 0,01$	$0,14 \pm 0,02$	$0,06 \pm 0,01$	
ECG	$2,32\pm0,22$	$0,41 \pm 0,05$	$0,18 \pm 0,03$	$0,11 \pm 0,02$	

P = 0.95, n = 5


Изменение электрофоретического профиля чая при добавлении соли железа (III)

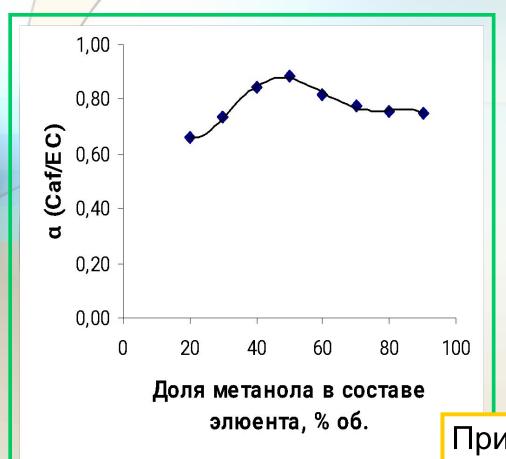
Экстракт зеленого чая


Экстракт зеленого чая с добавкой соли железа (III)

Изменение площади пика EGCG на электрофореграмме при добавлении в пробу соли железа (III)

Зависимость R_г аналитов от концентрации метанола в составе подвижной фазе

ПО (Caf) 100 нг фронт 0 b старт


П.ф. метанол - этилацетат

Пластины «Sorbfil» ПТСХ-АФ-В-УФ (ООО «Имид», г. Краснодар)

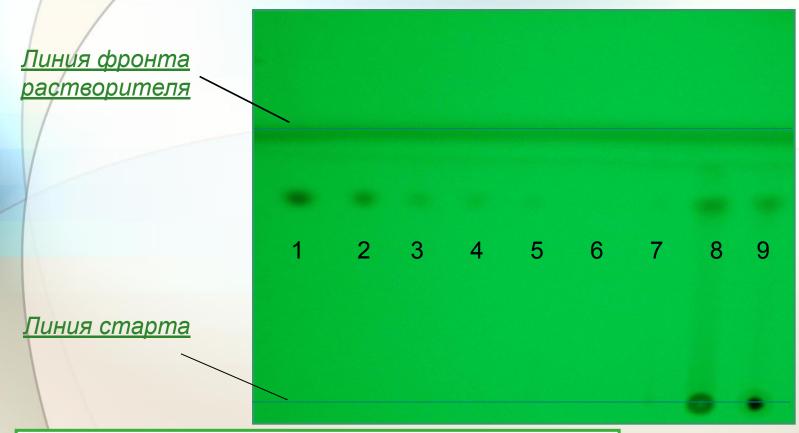
$$R_h = R_f \cdot 100$$

 $R_{r} = a/b$

Влияние состава элюента на селективность разделение кофеина и эпикатехина

$$\alpha(Caf/EC) = \frac{R_f(Caf)}{R_f(EC)}$$

Содержани е метанола в п.ф., % об.	α (Caf/EC)
< 30	< 0,73
> 70	< 0,78

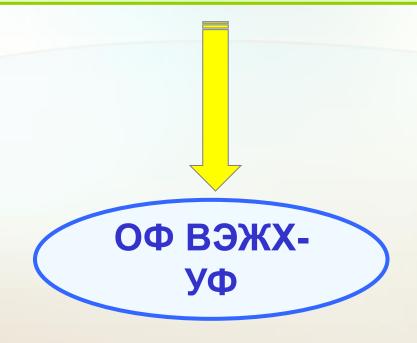

При содержании метанола 10%

 $R_{f}(Caf) = 0,17$

Оптимальный состав элюента:

метанол – этилацетат = 25 : 75 % об.

Влияние добавки соли железа (III) на хроматографический профиль реального объекта


- (1 7) стандартные растворы кофеина,
- 8 проба чая,
- 9 проба чая с добавкой хлорида железа (III)

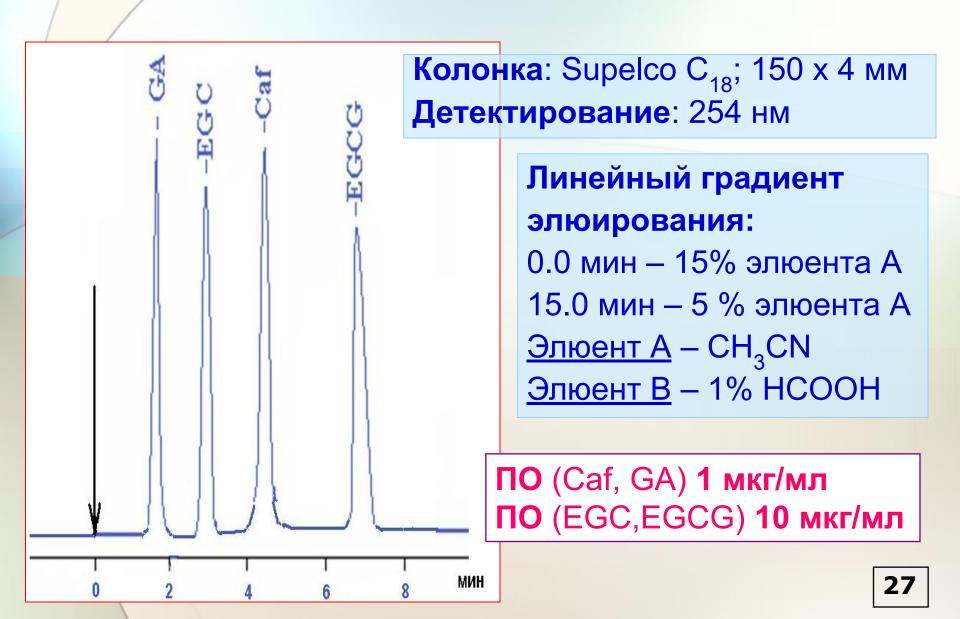
Условия:Пластины ПТСХ-АФ-В-УФ «Сорбфил»,

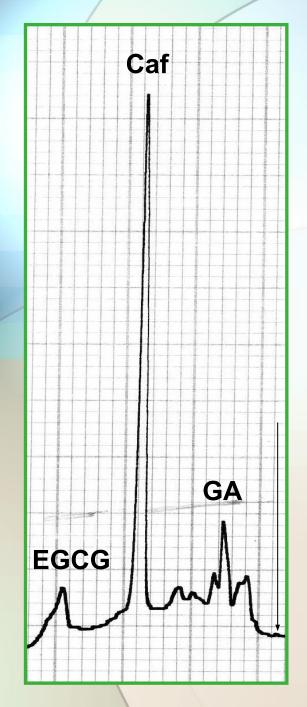
п.ф. - $CH_3OH : CH_3COOC_2H_5 = 1 : 3$

Проверка корректности результатов количественного определения полифенолов и кофеина, полученных в режиме КЭ

Колонка: Supelco C_{18} ; 150 ×4 мм

Элюент: ацетонитрил – 1 % муравьиная кислота


Варианты изократического и градиентного элюирования в режиме ОФ ВЭЖХ


Режим элюирования (элюент A : элюент B, oб.%)

0.0 мин	15.0 мин			
80 : 20	80 : 20			
15 : 85	15 : 85			
15 : 85	60 : 40			
15 : 85	5 : 95			

Элюент А – ацетонитрил **Элюент В** – 1% муравьиная кислота

Оптимальные условия разделения модельной смеси кофеина и полифенолов в режиме ВЭЖХ

Использование метода ВЭЖХ в качестве референтного

Образец чая	Метод количественного определения кофеина		
1	МЭКХ	ОФ ВЭЖХ	
Чёрный чай «Ришехат» (Дарджилинг, Индия)	$1,21 \pm 0,06$	$1,\!24 \pm 0,\!05$	
Белый чай «Серебряные иглы» (Китай)	$2,43 \pm 0,11$	$2,33 \pm 0,10$	

(P = 0.95, n = 3)

28

Сопоставление с литературными данными

Образец	Caf	EC	EGC	ECG	EGCG	Метод	Ссылка
Зеленый	2,66	0,55	2,25	0,57	4,68	DOMEN	F17
Зеленый	3,36	0,69	3,23	0,94	5,68	ВЭЖХ- УФ	[1]
Черный	3,29		0,50	0,38	0,37		
Зеленый	_	0,73	3,56	0,53	2,31		.
Зеленый		0,69	2,46	1,27	3,10	КЭ-УФ	[2]
Черный		0,22	0,32	0,89	0,92		
Белый	2,43	0,36	0,77	3,28	4,30		
Зеленый	1,27	0,53	2,28	0,77	1,30	КЭ-УФ	Наши данные
Черный	1,21	0,26	0,24	0,10	1,74		Данны

Концентрация выражена в % масс

[1] P.L. Fernandez, M.J. Martin, etc. The Analyst. 2000. V. 125. P.421-425.

[2] B.-L. Lee, C.-N. Ong. J. Chromatogr. A. 2000. V. 881. P.439-447.

Выводы

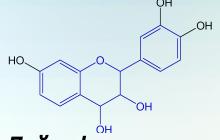
- 1. Изучены возможности различных вариантов капиллярного электрофореза с УФ-детектированием (КЗЭ и МЭКХ) для одновременного разделения смеси полифенолов и кофеина. Показано, что использование мицеллярного режима позволяет проводить их количественное определение с пределом обнаружения 1 мкг/мл. В качестве референтного использовался метод ОФ ВЭЖХ
- 2. Установлены зависимости электрофоретических подвижностей, эффективности и селективности разделения аналитов от концентрации мицеллообразующего агента додецилсульфата натрия. Найдена оптимальная концентрация детергента 25 мМ
- 3. В режиме МЭКХ (буферный электролит: 25 мМ фосфатный буфер (рН 7.0), 25 мМ ДДСН; 25 кВ; 200 нм) получены характеристические профили и проведен количественный анализ реальных объектов различных сортов зеленого и черного чая.
- 4. Показано, что процессы комплексообразования полифенолов чая с казеином и ионами Fe^{3+} приводит к заметному снижению содержания полифенольных соединений.
- 5. Предложен экспресс-вариант определения кофеина в составе чая методом ВЭТСХ с пределом обнаружения 100 нг

Спасибо за внимание!

Схема биосинтеза полифенолов

$$R \longrightarrow C + HS-KoA \xrightarrow{enzyme} R \longrightarrow C + H_2O$$

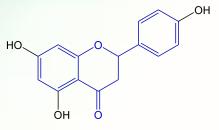
Нарингенин (Ar = п-гидроксифенил)


Типичные представители флавоноидов

(флаван-3-олы)

Кверцетин

(флавон-3-олы)


Бутеин (халконы)

Лейкофизетинидин (флаван-3,4-диолы)

Таксифолин (флаванонолы)

Флоретин (дигидрохалконы)

Нарингенин (флаваноны)

Дельфинидин (антоцианидины)

Ауреузидин (ауроны)

Типичные представители нефлавоноидов

п-Кумаровая кислота (R = H) Кофейная кислота (R = OH)

Галловая кислота

Ресвератрол

Полифенолы

Простые эфиры

Нарингенин-7-глюкозид

Сложные эфиры

(-)-Эпигаллокатехин галлат

Компоненты чая

Фенольные вещества (до 30 %)

→ Пектиновые вещества (2-6%)

Эфирные масла (0,02%)

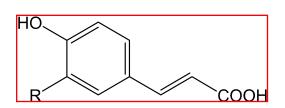
→ Пигменты
(1-12 %)

→ Алкалоиды (1-5 %)

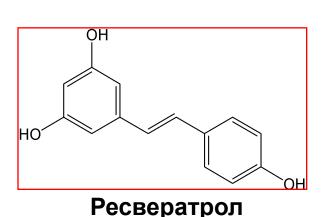
<table-cell-rows> Минеральные вещества

+ Аминокислоты и белки (16-25 %)

+ Витамины


Среднее содержание флаван-3-олов в побеге цейлонского чая

Катехин	г /100 г
(-)-Эпигаллокатехин	2,35
(-)-Галлокатехин	0,37
(-)-Эпикатехин	0,63
(+)-Катехин	0,35
(-)-Эпигаллокатехин галлат	10,55
(-)-Эпикатехин галлат	2,75


Важные соединения, содержащие фенольные гидроксилы

Полифенолы нефлавоноидной группы

Синтетические пищевые красители

п-Кумаровая кислота (R = H) Кофейная кислота (R = OH)

Желтый солнечный закат (Е110)

Красный очаровательный (Е129)

Окисление полифенолов

Потенциалы окисления катехинов

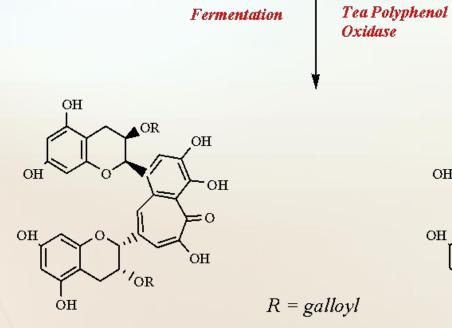
Катехин	Структурная формула	Потенциал окисления, мВ
(-)-эпикатехин	HO OH OH OH	835
(-)-эпигаллокатехин	HO WOH OH	760
(-)-эпикатехин галлат	но он он он	740
(-)-эпигаллокатехин галлат	HO OH OH OH	720

Окисление катехина ферментом пероксидазой в растительных объектах

Катехин

Дегидродикатехин

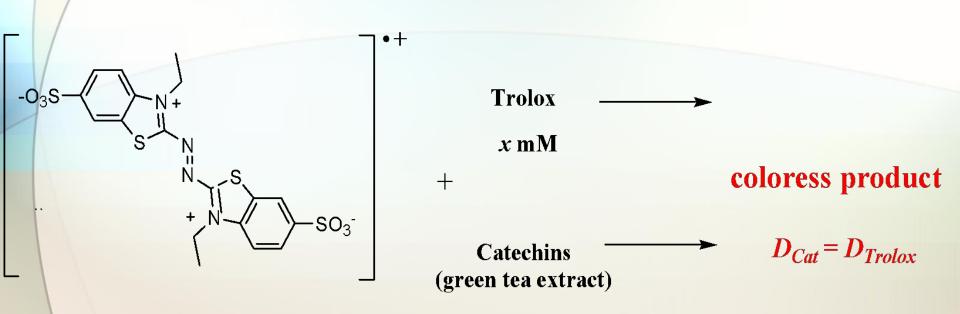
(-)-Epicatechin


(-)-Epicatechin gallate

(-)-Epigallocatechin gallate

OH

(-)-Epigallocatechin


Major green tea components

The a flavins

Thearubigins

Определение общей антиоксидантной активности зеленого чая

blue-green ABTS

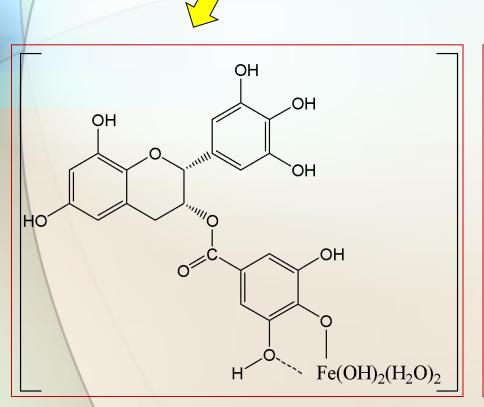
fixed concentration

fixed concentration

pKa: 9.98

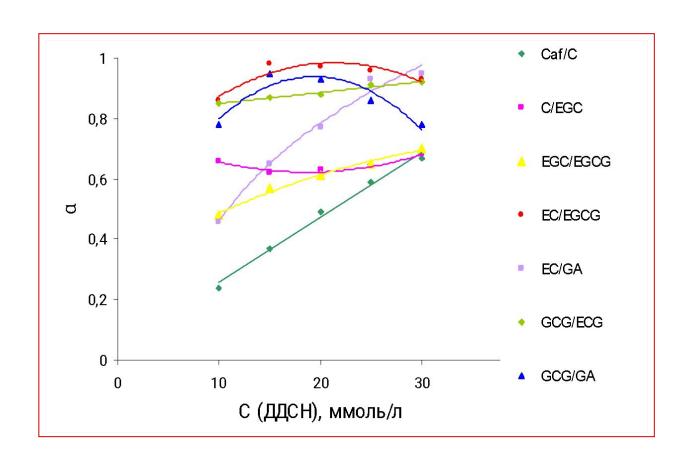
pKa: 8.64, 9.41, 11.26, 13.26

pKa: 4,27, 8,68, 11,45

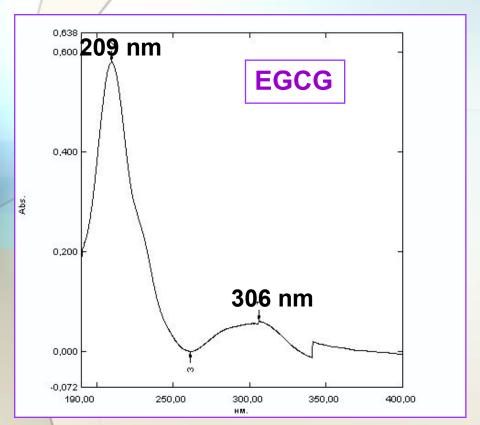

pKa: 4,62,9,07

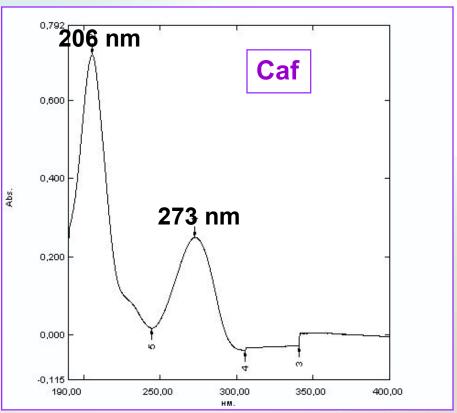
Комплексы полифенолов с ионами металлов

Комплекс морина с алюминием 1:1 Комплекс морина с алюминием 1:2

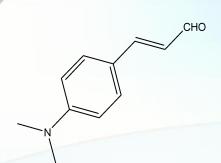

ВЭЖХ / Фл 418/490нм ПО 10-10 М

Предполагаемые структуры комплексов полифенол – Fe³⁺




Строение комплекса EGCG – Fe³⁺

Зависимость селективности разделения аналитов от концентрации ДДСН в буферном электролите


УФ-спектры анионов эпигаллокатехин галлата и кофеина

Условия: растворы EGCG (400 мкг/л) и Caf (1 мг/л) в 10 mM боратном буфере рН 9,2 Спектрофотометр **UV-1700** «Shimadzu»

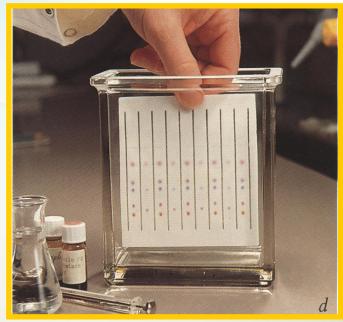
Спектрофотометрическое определение полифенолов

4-диметиламиноцинамальдегида (ДМАЦА)

coloriess

200 nm

yellow


CatechinO (CH₃)₂NHC₆H₄CH=CHCHO green

637 nm

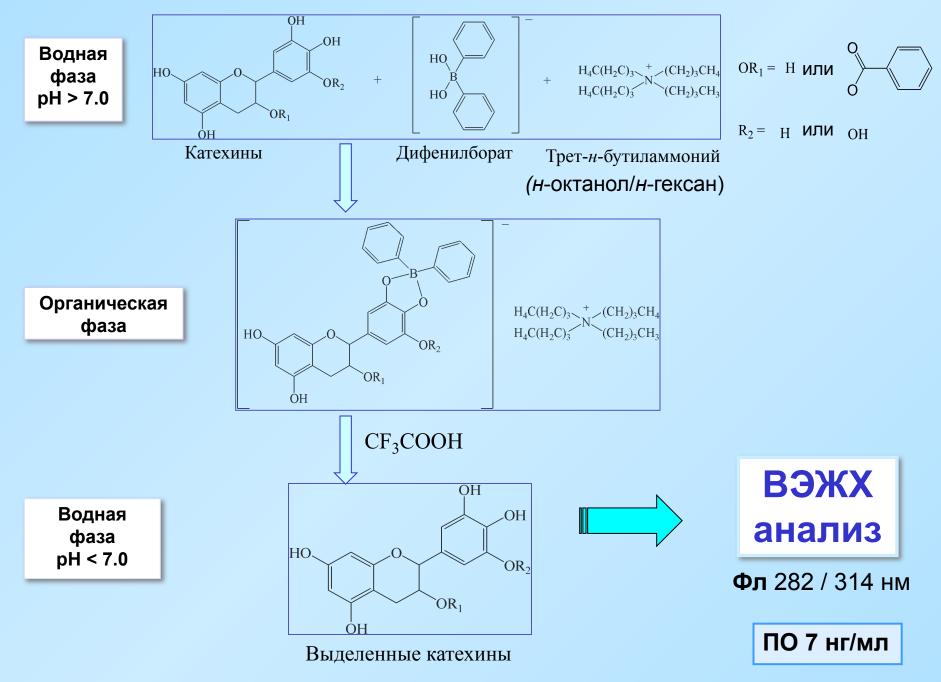
Преимущества ВЭТСХ



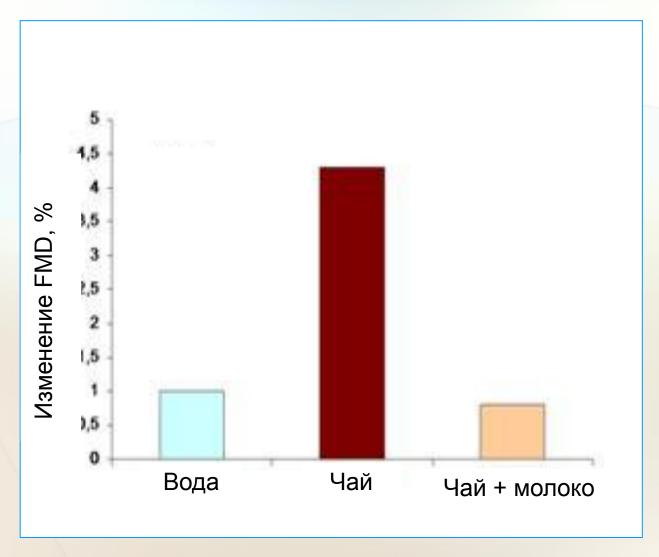
Возможность параллельно проводить анализ нескольких образцов

Сравнение ТСХ и ВЭТСХ

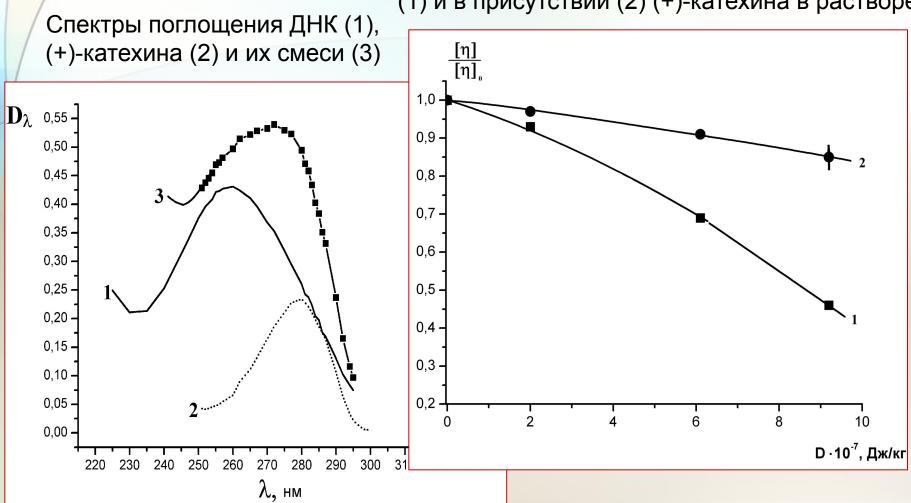
Характеристика пластины	TCX	ВЭТСХ
Толщина слоя сорбента, мкм	200-300	100-250
Размер зерен, мкм	5-20	5-7
Длина пробега п.ф., см	3-7	10-15
Время разделения, мин	5-30	15-20
Предел детектирования, нг	100	1000


Механизм разделения в МЭХК

t₀ – время выходанейтральных сильнополярных соединений


t_R - время выходасоединений спромежуточнойгидрофобностью

t_m – время выхода *сильно гидрофобных* соединений

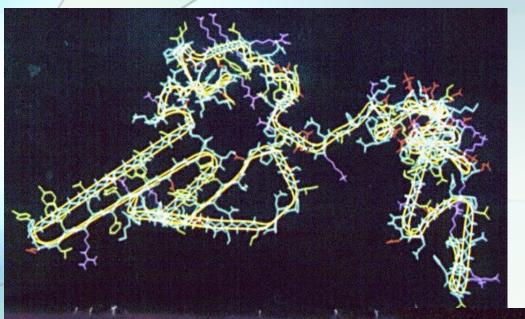

H. Tsuchiya, M. Sato, H. Kato, H. Kureshiro, N. Tagahi // Talanta. 2005. V. 46. P.717-726.

Влияние потребления кипяченой воды, свежезаваренного чая и свежезаваренного чая, содержащего 10% молока, на кровоток, обусловленный расширением сосудов (flow-mediated dilation (FMD))

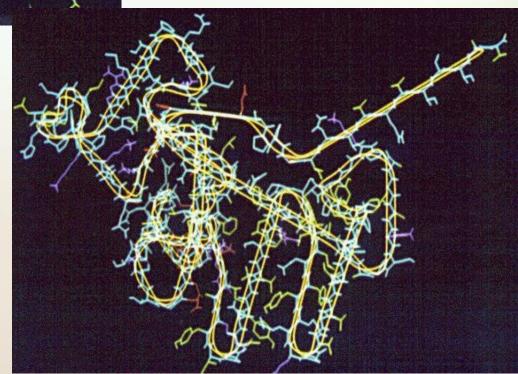
Влияние катехинов на свойства растворов ДНК

Дозовая зависимость характеристической вязкости ДНК при УФ-облучении в отсутствии (1) и в присутствии (2) (+)-катехина в растворе


Точками показана сумма спектров (1) и (2)

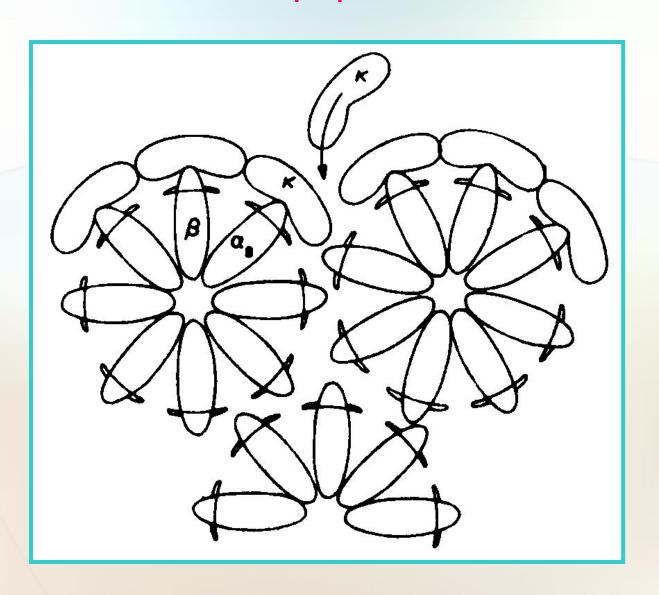

Определение кофеина в реальных объектах

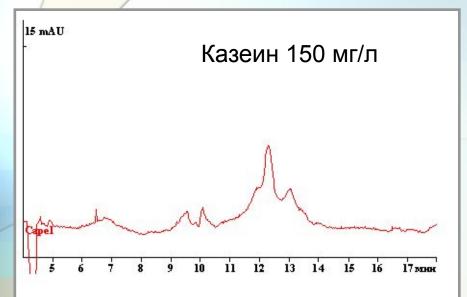
Метод	Детектирование	Рабочая длина	Объекты анализа
раз <mark>деления</mark>		волны, нм	
ОФ ВЭЖХ	Детектор на диодной матрице	210	Кофеин, никотиновая, хинолиновая кислоты и др. в кофе
ОФ ВЭЖХ	Детектор на диодной матрице	229	Кофеин, 8-хлоротеофиллин
ОФ ВЭЖХ	Фотометрический детектор	254	Кофеин, индопрофен, кетопрофен, и др. фармокологические препараты
ОФ ВЭЖХ	Детектор на диодной матрице	272	Кофеин в чайных листьях
ОФ ВЭЖХ	Детектор на диодной матрице	231	Пуриновые алкалоиды и катехины в чае
ОФ ВЭЖХ	Спектрофотометрический детектор	230, 254, 280	Кофеин, кетопрофен, пропранолол
мэкх	Спектрофотометрический детектор	274	Кофеин и его метаболиты в напитках; таблетках; крови
ОФ ВЭЖХ	Спектрофотометрический детектор	272	Кофеин, теофиллин, теобромин в коле; плазме крови
ОФ ВЭЖХ	Спектрофотометрический детектор	280	Кофеин и его 14 метаболитов в моче

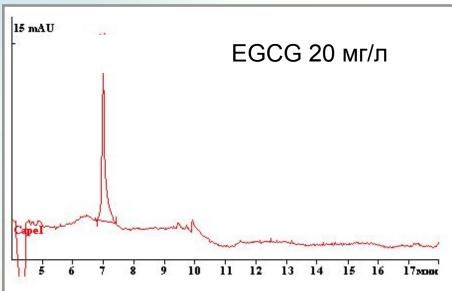

Kaseuh

Белок	Содержание,	Молекулярный вес	Число аминокислотных остатков (пролин)
Общий белок	100		
Общий казеин	80		
α _{s1} -	31	23000	199 (17)
α_{s2}^{-}	8	25000	207 (10)
β-	28	24000	209 (35)
K-	10	19000	169 (20)

αs1-Казеин




к-Казеин

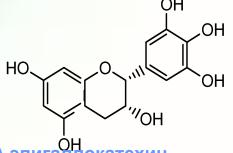

Серинфосфат


Белок	Число остатков фосфорной кислоты
α _{s1} -	11
α _{s2} -	8
β-	5
К-	1

Казеин в форме мицелл

[2R,3S]-2-[3,4дигидроксифенил]-3,4дигидро-1[2Н]бензопиран-3,5,7-триол

(-)-Эпикатехин галлат

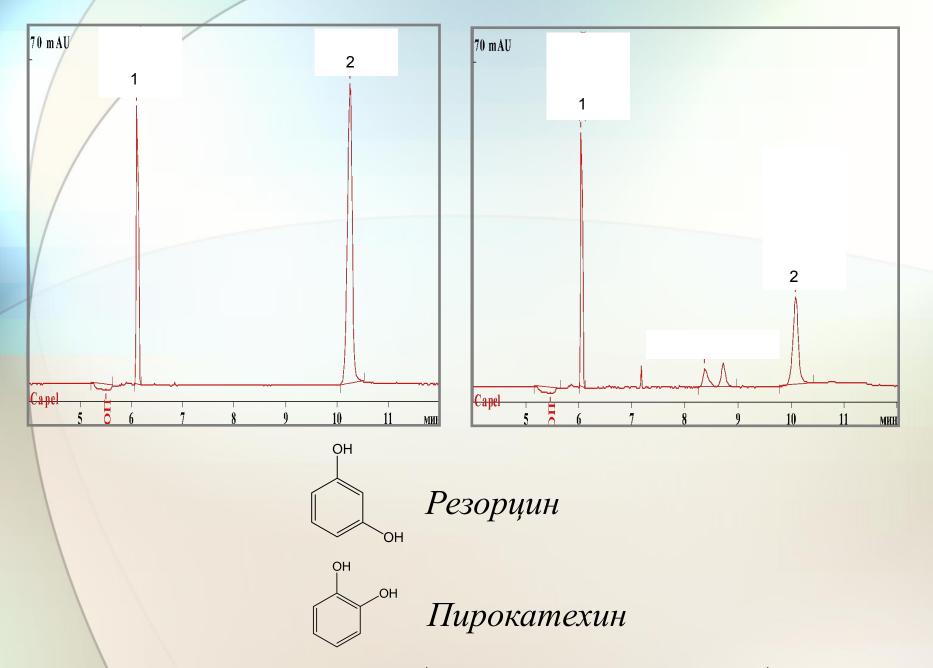

[2R,3R]-2-[3,4дигидроксифенил]-3,4дигидро-1[2Н]бензопиран-3,5,7-триол 3-[3,4,5тригилроксибензоат

(-)-ЭпикаТехин

[2R,3R]-2-[3,4дигидроксифенил]-3,4дигидро-1[2Н]бензопиран-3,5,7-триол

(-)-галлокатехин галлат

[2S,3R]-2-[3,4,5тригидроксифенил]-3,4дигидро-1[2H]-бензопиран-3,5,7триол 3-[3,4,5-тригидроксибензоат



(-)-эпигаллокатехин

[2R,3R]-2-[3,4,5тригидроксифенил]-3,4дигидро-1[2H]-бензопиран-3,5,7триол

(-)-эпигаллокатехин галлат

[2R,3R]-2-[3,4,5тригидроксифенил]-3,4дигидро-1[2H]-бензопиран-3,5,7триол 3-[3,4,5-тригидроксибензоат

Концентрация органических лигандов — $1\cdot 10^{-4}$ М. Концентрация ионов железа — $1\cdot 10^{-4}$ М 1 — Резорцин, 2 - Пирокатехин

$$R_{s} = \frac{\sqrt{N}}{4} \cdot \frac{\alpha - 1}{\alpha} \cdot \frac{k'}{1 + k'} \qquad R_{s} = \frac{1.77 \cdot (t_{2} - t_{1})}{w_{1}^{0.5} + w_{2}^{0.5}}$$

$$\mu_{{}_{{}^{9}\!\phi\phi}}=rac{L_{{}_{{}^{9}\!\phi\phi}}\cdot L_{{}_{o\!\delta\!u\!u}}}{U\cdot t_{{}_{{}_{M\!u\!s\!p}}}}$$

$$N = \frac{L_{_{\ni \phi \phi}} \cdot U \cdot \mu}{2 \cdot D \cdot L_{_{o \delta u y}}}$$

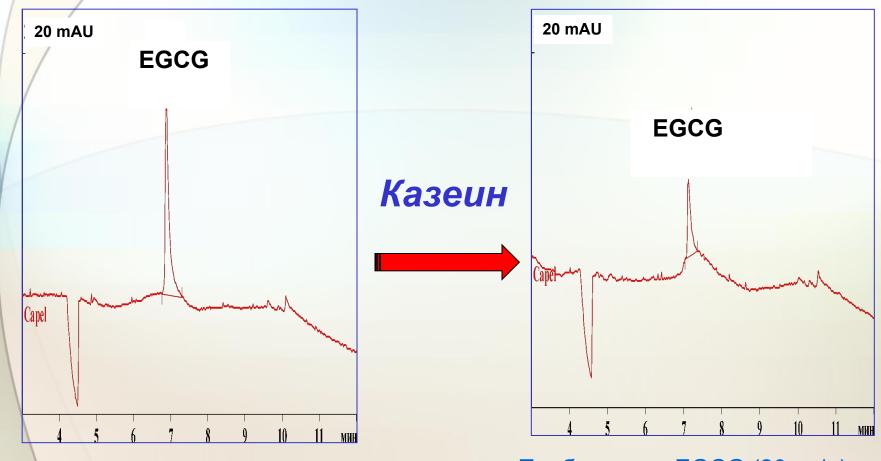
$$\alpha = \frac{\mu_A}{\mu_B} = \frac{t'_A}{t'_B}$$

$$N = 5.54 \cdot \left(\frac{t_{\rm M}}{w^{0,5}}\right)^2$$

$$k = \frac{t_R - t_0}{t_0 \cdot (1 - t_R / t_{mc})}$$

Оптимальные условия электрофоретического разделения смеси полифенолов и кофеина

- Система капиллярного электрофореза Капель-105;
- <u>Капилляр:</u> $L_{\text{общ}} = 60$ см, $L_{\text{эфф}} = 50$ см, $d_{\text{внутр}} = 75$ мкм;
- Буферный электролит: 25 мМ фосфатный буфер рН
 7.0, 25 мМ додецилсульфата натрия;
 - <u>Ввод:</u> 30 мбар, 10 с; <u>Напряжение:</u> 25 кВ
 - Рабочая температура 20°C
 - <u>Длина волны:</u> λ = 200 нм

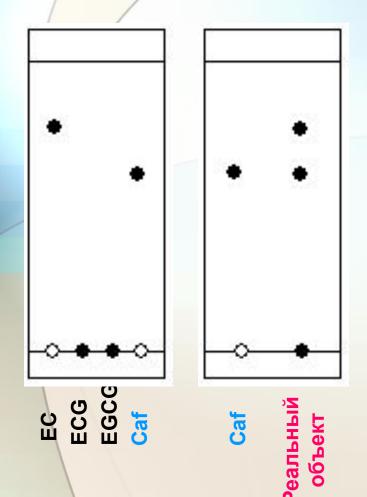

Условия произрастания чая

> Время заваривания чая

Условия хранения (температура, влажность)

Взаимодействие полифенолов с органическими и неорганическими соединениями

Влияние добавки казеина на электрофоретический профиль полифенолов



Проба: смесь EGCG (20 мг/л) и казеина (6 мг/л)

Ведущий электролит: 25 мМ фосфатный буфер (рН 7,0), 25 мМ ДДСН Ввод: 30 мбар, 10 сек. Напряжение: 25 кВ. Длина волны: λ = 200 нм

<u>Проба</u>: EGCG (20 мг/л)

Адсорбционная ТСХ

R_f=a/b — параметр удерживания аналита
N=16·(a/w)² - число теоретических тарелок на разделяющем участке

H=a/N – высота, эквивалентная теоретической тарелке

 $\alpha = a_1/a_2$ — коэффициент селективности двух аналитов (1-й аналит — более удерживаемый)

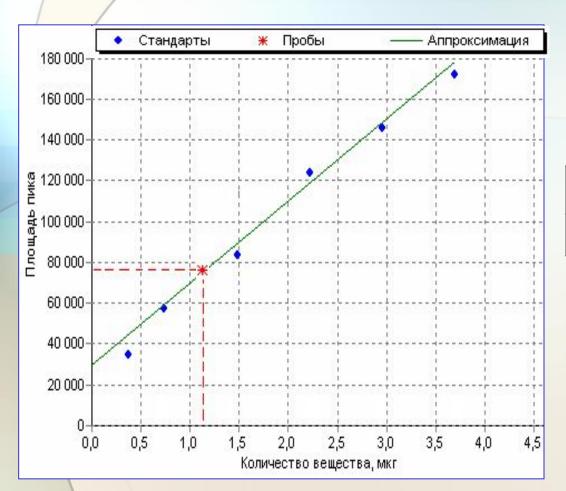
 $R_s = 2 \cdot (a_2 - a_1)/(w_1 + w_2)$ — коэффициент разрешения двух аналитов (1-й аналит — более удерживаемый)

 ${\bf a}_1,\,{\bf a}_2$ - пути, пройденные аналитами ${\bf b}$ – путь, пройденный элюентом от линии старта до линии фронта ${\bf w}_1,\,{\bf w}_2$ – ширина пятна аналитов

Аналит	EC	ECG	EGCG	Caf
R _f	$0,73 \pm 0,02$	0,00	0,00	$0,50 \pm 0,02$

H = 0.02 MM

 $\alpha(Caf/EC) = 0.68$


 R_s (Caf/EC) = 3,3

Условия:

Пластины ПТСХ-АФ-В-УФ «Сорбфил» п.ф. - $CH_3OH : CH_3COOC_2H_5 = 1 : 3$

29

Количественное определение кофеина в чае методом ВЭТСХ

Содержание кофеина в чае «Кольца Джейд» (Китай)

МЭКХ	ВЭТСХ
$2,81 \pm 0,10$	$2,97 \pm 0,13$

P = 0.95, n = 3

<u>Условия</u>:

Пластины ПТСХ-АФ-А-УФ «Сорбфил» п.ф. - $CH_3OH: CH_3COOC_2H_5 = 1:3$ Объем пробы чая - 4 мкл