
Агрегатные состояния вещества.

- ***** Твёрдое
- **Тазообразное**
- **%** Жидкое
- **Плазменное**
- **Нейтронное**

Яблокова Елизавета 8акл.

Пермь 2007г.

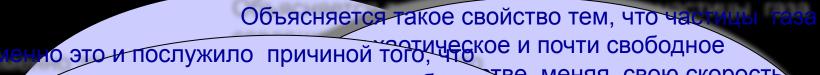
МОУ «Лицей №10»

Существуют ли твёрдые тела?

Этот вопрос может вызвать недоумение. Ведь окружающий нас мир полон твёрдых тел, например деревянная доска, стальной прут.

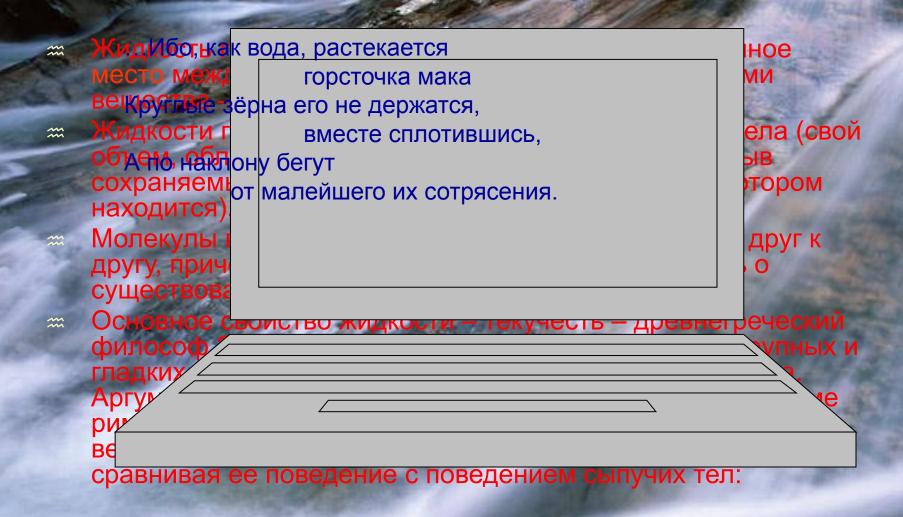
- И всё же деревянная доска хотя бы немного, но прогнётся под тяжестью севшего на неё человека.
 - Стальной прут сложно растянуть руками, однако не невозможно: мастер настраивает рояль, натягивая металлические струны.


- твёрдым, если сохраняет свою форму. То есть расстояние между любыми точками твёрдого вещества остаётся неизменным, чтобы с ним не происходило.
- •• Абсолютно твердых тел в природе нет, но при описании многих явлений можно пренебречь изменениям формы и пользоваться моделью твёрдого тела.



Анаксимен из Милета (VI в. до н. э.)	Называл воздух «Первоматерией»
Эмпедокл из Агригента (V в. до н. э.)	Считал воздух одним из четырёх элементов, образующих весь мир
Сторонники атомистического учения	Полагали, что состоит из атомов
Герон Александрийский (около I в. н. э.)	Писал: «Воздух состоит из крохотных частиц, окружённых вакуумом, подобно тому, как воздух окружает крупинки сухого песка

Сложный состав воздуха был установлен лишь во второй половине XVIII в. Вскоре после открытия азота (1772г.) и кислорода (1774г.) французский химик Антуан Лоран Лавуазье (1743-1794) доказал, что оба газа входят в состав воздуха.



соответствующее состояние вещества было названо свою скорость голландским естествоиспытателем Яном Баптистом с другом или со ван Гельмонтом (1579-1644) «газом» (греч. «хаос»). чаходится газ.

Жидкое состояние вещества.

Плазменное состояние вещества

- Увеличивая температуру газа при фиксированном давлении, можно добиться того, что его молекулы при столкновениях начнут «разбивать» друг друга на ионы и электроны. В результате образуется плазма. Она представляет собой частично или полностью ионизованный газ, характеризующийся практически одинаковой плотностью положительных и отрицательных зарядов:
- В состоянии плазмы находится большая часть вещества Вселенной. Плазму с температурой t < 100000 С называют низкотемпературной (плазма газовых разрядов, пламя, верхние слои атмосферы Земли, звёздные атмосферы, межзвездная среда и галактические туманности), а плазму с температурой t > 1000000 С горячей или высокотемпературной (она существует в недрах Солнца и других звезд).
- В то время как горячая плазма стала предметом интенсивного изучения лишь во второй половине XX в., низкотемпературная плазма (в виде обычного огня) находиться в центре внимания философов уже 2,5 тыс.лет. С тех пор на протяжении нескольких столетий она рассматривалась учеными в качестве одного из четырех элементов нашего мира. «Пламя, писал Р.Бойль, самое горячее тело, какое мы знаем, состоит из частиц, колеблющихся столь бурно, что они постоянно и быстро летают повсюду стаями и рассеивают или разрушают все горючие тела, какие они встречают на своем пути».
- Плазму и сейчас нередко называют четвертым состоянием вещества. В отличие от обычного (не ионизованного) газа между ее частицами существует значительное взаимодействие. Обусловленное наличием у них электрических зарядов. Благодаря этому взаимодействию характер движения частиц в плазме резко отличается от того, что свойствен нейтральным молекулам газа.

Нейтронное состояние вещества

• При значительном увеличении давления вещество может перейти в пятое – нейтронное – состояние. Оно возникает в результате «вдавливания» атомных электронов в ядра и последующего «слияния» этих электронов с находящимися там протонами. Так как в результате подобного «слияния» образуются нейтроны, описанный процесс называют нейтронизацией вещества. В земных условиях она никогда не наблюдалась. Однако в 1967г. Ученым удалось открыть космические объекты, имеющие столь высокую плотность (до 10 кг/м), что вещество в них неминуемо должно было подвергнуться нейтронизации. Эти объекты получили название нейтронных звезд. Они совсем не похожи на наше Солнце и представляют собой своеобразные гигантские атомные ядра.