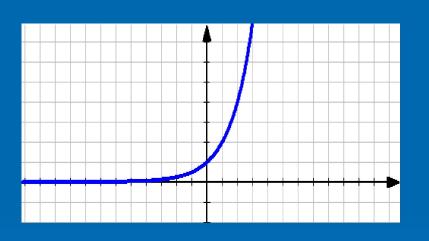
ая функция

Определение.

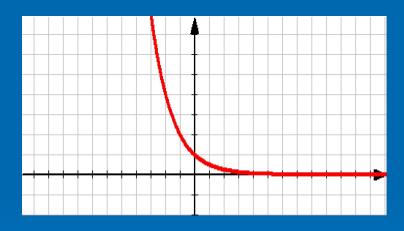
Функцию вида

$$y = a^x, a \boxtimes 0, a \neq 1$$

называют показательной функцией


Основные свойства

a>1	0 <a<1< th=""></a<1<>
$D(f)=(-\infty; +\infty)$	$D(f)=(-\infty; +\infty)$
$E(f)=(0;+\infty)$	$E(f)=(0;+\infty)$
Возрастает	Убывает
Непрерывна	Непрерывна
Ограничена снизу	Ограничена снизу
Выпукла вниз	Выпукла вниз
Дифференцируема	Дифференцируема


График функции

Кривая называется экспонентой

a>1

Геометрическая особенность графика функции

Ось Ох является горизонтальной асимптотой графика функции $y=a^x$

- при х→ -∞, если а >1
- □ при х→ +∞, если 0<a<1</p>

Показательными уравнениями

называют уравнения вида

$$a^{f(x)} = a^{g(x)}$$

a>0,a≠1, и уравнения, сводящиеся к этому виду

Основные методы решения показательных уравнений

Основан на использовании графический иллюстраций или каких-либо свойств функции.

□ Метод уравнивания показателей

Основан на применении теоремы:

Уравнение
$$a^{f(x)} = a^{g(x)}$$
 равносильно уравнению $f(x)=g(x)$,

где а>0,а≠1.

Метод введения новой переменной
 Переменной

Показательные неравенства

Показательными неравенствами называют

неравенства вида $a^{f(x)}\rangle a^{g(x)}$

а>0,а≠1, и неравенства, сводящиеся к этому виду. $a^{f(x)} \rangle a^{g(x)}$

$$\langle a^{f(x)} \rangle a^{g(x)}$$

Теорема: Показательное неравенство

равносильно неравенству
$$f(x)>g(x)$$
, если $a>1$; $a^{f(x)} > a^{g(x)}$

Показательное неравенство

равносильно неравенству f(x) < g(x), если 0<a<1

Формулы, связанные с дифференцированием и интегрированием показательной функции:

$$(a^x)' = a^x \ln a \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$
$$(e^x)' = e^x \qquad \int e^x dx = e^x + C$$