Научное кафе «Изменение климата – изменение образования»

Биомониторинг и биоиндикаторы в аспекте изменения климата

Международный государственный экологический университет им. А.Д.Сахарова кафедра ЮНЕСКО, проф. Н.В. Гончарова

• Биоиндикация это оценка состояния окружающей среды по реакциям живого организма. Эта реакция позволяет оценить антропогенное воздействие на среду обитания в показателях, имеющих биологический смысл.

• Для биоиндикации используются растения и животные. Они обладают различной устойчивостью к антропогенным воздействиям. Растения служат хорошим показателем изменения окружающей среды антропогенными загрязнениями. А животные в свою очередь интересны как объект, физиологически близкий человеку. По их реакциям можно предвидеть последствия загрязнения не только для природы, но и для человека. Микробы, наиболее быстро реагирующие биоиндикаторы и по этому лучше всего подходят для санитарно-медицинских экспериментов.

Методы Биоиндикации

- Ботанический (фито)
- Почвенно-зоологический
- Биохимический (ферментные)
- Микробиологический

Биоиндикационный метод

позволяет:

- Обеспечить постоянную оценку экологических условий и выявить текущее состояние среды обитания человека.
- Установить причины негативного воздействия на природные среды, природные объекты, и предсказать ущерб.
- Сделать прогноз изменения состояния экологической обстановки на ближайшую и отдаленную перспективу

Виды биоиндикаторов

- ботанические;
- зоологические;
- микробиологические;
- биохимические

Биоиндикаторы плодородия почв

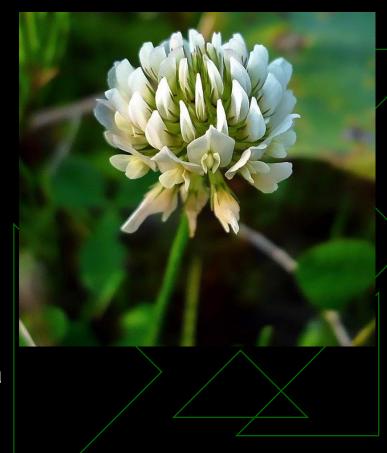
• Плодородие одних почв может быть высоким, других — низким, однако и в том и в другом случае оно определяется характером почвообразовательного процесса и факторами почвообразования.

Плодородие	Биоиндикаторы		
	На лугах	в лесах	
Очень высокое	Чина луговая, костер безостый, таволга, осока лисья	Малина, крапива, Иван-чай, чистотел, копытень	
Умеренное (среднее)	Овсяница луговая, лисохвост луговой, щучка дернистая, купальница, вероника длиннолистая	Майник двулистный, медуница, грушанка, купальница	
Низкое	Белоус, ситник нитевидный, душистый колосок, кошачья лапка	Сфагновые мхи, черника, брусника, клюква	

Биоиндикаторы кислотных почв

• Кислотность почвы – важнейший экологический фактор, определяющий условия жизнедеятельности почвенных организмов и высших растений, а также подвижность загрязнителей в почве.

Почвы	Биоиндикаторы
Кислые (рН меньше 5,0)	Белоус, душистый колос, щавель малый, хвощ, клюква, голубика, сфагнум, вереск, зелёные мхи, сфагнум плаун.
Слабокислые (pH 5,1 – 5,5)	Ромашка непахучая, манжетка, метлица полевая, вейник ланцетный, щучка, лютик едкий, погремок
Нейтральные (pH 5,5 – 7,0)	Лисохвост луговой, цикорий. Овсяница луговая, мятлик луговой, борщевик сибирский, тимофеевка луговая, клевер луговой, сныть европейская, лисохвост луговой, мыльнянка лекартсвенная
Щелочные (рН больше 7,0)	Бересклет бородавчатый, бузина сибирская, песчанка, мать-и-мачеха, очиток едкий, горчица


ОЦЕНКА СОЛЕВОГО ЗАГРЯЗНЕНИЯ ПОЧВЫ ПО ЛИСТЬЯМ ЛИПЫ

Липа весьма чувствительна к загрязнению почвы солями, попадающими сюда вместе с песком в зимний период. Показателем реакции является краевой хлороз на листьях. Поэтому по величине повреждения листовых пластинок липы можно судить о степени засоления газонов.

ИНДИКАЦИЯ СОСТОЯНИЯ СРЕДЫ ПО ЧАСТОТАМ ВСТРЕЧАЕМОСТИ ФЕНОВ БЕЛОГО КЛЕВЕРА

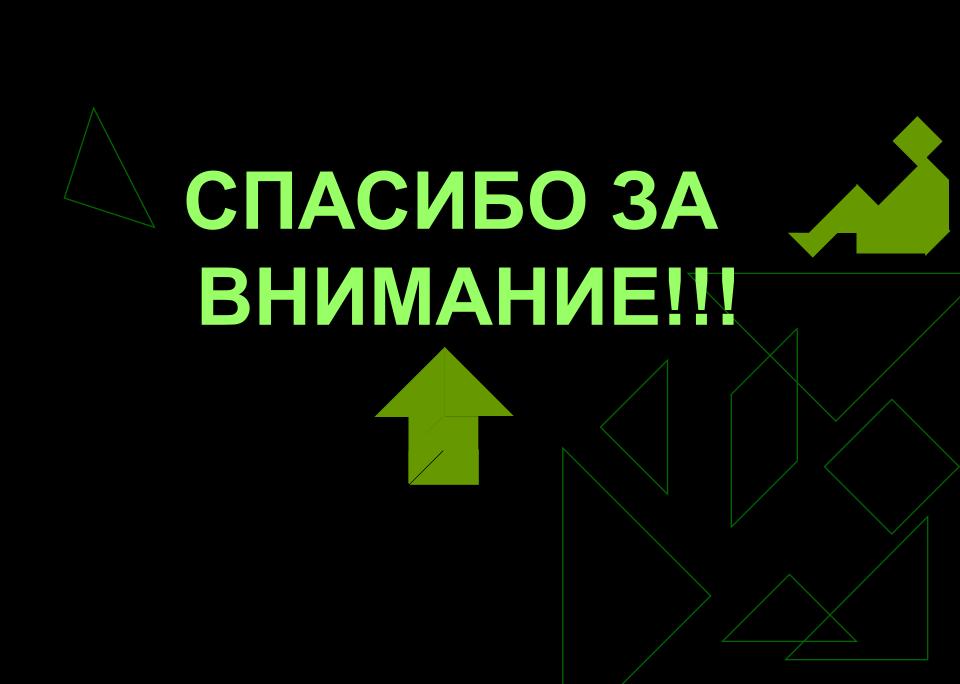
- Влияние антропогенных факторов довольно часто отражается на фенотипической структуре популяций растительных и животных организмов. Частота встречаемости некоторых фенов является биологическим индикатором воздействия, в частности, загрязнения среды.
- У белого клевера, распространенного довольно широко, в качестве индикатора загрязнения среды может быть использована форма седого рисунка на листьях.

КРЕСС-САЛАТ КАК ТЕСТ-ОБЪЕКТ ДЛЯ ОЦЕНКИ ЗАГРЯЗНЕНИЯ ПОЧВЫ И ВОЗДУХА

Кресс-салат – однолетнее овощное растение, весьма чувствительной к загрязнению среды тяжелыми металлами и выбросами автотранспорта. Под влиянием загрязнителей могут изменяться корни и побеги этого растения, нарушается всхожесть семян. Ввиду простоты выращивания и биоиндикационного использования кресс-салат может быть весьма удобным объектом биомониторинга.

КРЕСС-САЛАТ КАК ТЕСТ-ОБЪЕКТ ДЛЯ ОЦЕНКИ ЗАГРЯЗНЕНИЯ ПОЧВЫ И ВОЗДУХА

Кресс-салат – однолетнее овощное растение, весьма чувствительной к загрязнению среды тяжелыми металлами и выбросами автотранспорта. Под влиянием загрязнителей могут изменяться корни и побеги этого растения, нарушается всхожесть семян. Ввиду простоты выращивания и биоиндикационного использования кресс-салат может быть весьма удобным объектом биомониторинга.



Фитоиндикация избыточного содержания некоторых химических элементов в почве

Растения могут весьма чувствительно реагировать на избыточное содержание некоторых элементов, в частности, металлов, в почве. При этом может изменяться окраска листовой пластинки, наблюдаются хлорозы и некрозы. Следовательно, оценив состояние растений на той или иной территории, можно сделать некоторые выводы о загрязненности почвы.

Таблица 2. Признаки избыточного содержания некоторых микроэлементов в почве

Элемент	Реакция растения
Цинк	Обесцвечивание и отмирание тканей листа, пожелтение молодых листьев, отмирание верхушечных почек, окрашивание жилок в красный или черный цвет. Первые признаки
	проявляются на молодых растениях.
Медь	Хлороз молодых листьев. При этом жилки остаются зелеными.
Марганец	Междужилковый хлороз, некроз тканей. Молодые листья искривляются и сморщиваются
Железо	На молодых листьях хлороз между жилками, которые остаются зелеными. Позднее лист становится беловатым или желтым.

