МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В. ЛОМОНОСОВА

Физический факультет, кафедра общей физики и волновых процессов

Попов Алексей Петрович

ЛАЗЕРНАЯ ДИАГНОСТИКА СИЛЬНОРАССЕИВАЮЩИХ СРЕД И ИЗМЕНЕНИЕ ИХ ОПТИЧЕСКИХ СВОЙСТВ ПУТЕМ ИМПЛАНТАЦИИ НАНОЧАСТИЦ

(кандидатская диссертация)

специальность 01.04.21 – лазерная физика

научный руководитель:

к.ф.-м.н., доцент А.В. Приезжев

СОДЕРЖАНИЕ

- Введение
- <u>Глава 1.</u> Прохождение сверхкороткого лазерного импульса через случайную среду
- <u>Глава 2.</u> Моделирование распространения сверхкороткого лазерного импульса в среде с сильным рассеянием методом Монте-Карло
- <u>Глава 3.</u> Метод лазерной импульсной времяпролетной фотометрии как инструмент диагностики сред с сильным рассеянием
- <u>Глава 4.</u> Изменение оптических свойств сред с сильным рассеянием в УФ-диапазоне путем имплантации наночастиц диоксида титана
- Заключение
- Список литературы

<u>Глава 1.</u> Нестационарное уравнение теории переноса излучения

$$\frac{\partial}{\partial \overline{s}}I(\overline{r},\overline{s},t) + \frac{1}{c}\frac{\partial}{\partial t}I(\overline{r},\overline{s},t) = -\mu_t I(\overline{r},\overline{s},t) + \frac{\mu_s}{4\pi} \int_{4\pi} \left[\int_{-\infty}^t I(\overline{r},\overline{s'},t')f(t,t')dt' \right] p(\overline{s},\overline{s'})d\Omega',$$

 $I(\bar{r}, \bar{s}, t)$ - лучевая интенсивность в точке в направлении, Вт·м⁻²·ср⁻¹; p(s,s') - фазовая функция рассеяния;

- μ_s коэффициент рассеяния (величина, характеризующая среднее количество актов упругого рассеяния, в которых участвует фотон при пробеге на единицу длины);
- *µ*_{*a*} коэффициент поглощения (величина, обратная расстоянию, на котором интенсивность уменьшается за счет поглощения в е раз);

$$\mu_t = \mu_s + \mu_a -$$
коэффициент экстинкции;

 $d\Omega'$ - единичный телесный угол в направлении;

$$\mu_s / \mu_t \equiv \Lambda -$$
альбедо единичного рассеивателя;

$$\mu_s / \mu_t \equiv \Lambda$$
 – альбедо единичного рассеивателя;

$$t$$
 – время;

f(t, t') – описывает временную деформацию δ -образного импульса после единичного акта рассеяния.

Метод Монте-Карло

ЗАДАЧИ

- исследовать возможность регистрации параметров рассеянного в переднее полупространство импульса в зависимости от оптических свойств и геометрических параметров среды, а также от длительности зондирующего импульса;
- изучить возможность использования сверхкоротких лазерных импульсов для диагностики сред с сильным рассеянием на примере среды, имитирующей кожу с разной концентрацией глюкозы; определить параметры рассеянного импульса, наиболее чувствительные для мониторинга изменений содержания глюкозы в физиологическом диапазоне концентраций;
- разработать методику определения размеров наночастиц, наиболее эффективно ослабляющих УФ-излучение при его распространении в среде, имитирующей кожу человека, а также метод расчета пропускания, отражения и поглощения света в среде с наночастицами.

<u>Глава 2.</u> Сверхкороткий лазерный импульс, рассеянный вперед от слоя: временные профили

фазовая функция **Хеньи-Гринштейна:** $p_{HG}(\theta) = \frac{1}{4\pi} \cdot \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}}$

Сверхкороткий лазерный импульс, рассеянный вперед от слоя: кратности рассеяния

M.Yu. Kirillin et al., Proc. SPIE **5946**, 496-509 (2005).

Параметры слоев, имитирующих слои кожи (λ = 820 нм)

Слой	µ _s , мм ⁻¹	μ_a , MM^{-1}	g	п	Толщина,	
					ММ	
эпидермис	42.0	4.00	0.85	1.36	0.20	
кровь	57.3	0.82	0.977	1.40	0.08	
дерма	17.5	0.23	0.85	1.36	4.72	

В.В. Тучин, Лазеры и волоконная оптика в биомедицинских исследованиях, 1998.

Влияние глюкозы на оптические свойства слоев кожи

 $\mu_s^{2ЛЮК} = (1 - 0.0022 \cdot C/18) \cdot \mu_s$ $g^{2ЛЮK} = (1 + 0.000007 \cdot C/18) \cdot g$ $n^{2ЛЮK} = n + 1.515 \cdot 10^{-6} \cdot C$ C [MГ/ДЛ] - КОНЦ. ГЛЮКОЗЫ [0..500]

фазовая функция Хеньи-Гринштейна:

$$p_{HG}(\theta) = \frac{1}{4\pi} \cdot \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}}$$

M. Kohl et al., *Phys. Med. Biol.* **40**, 1267 (1995), M. Tarumi et al., *Phys. Med. Biol.* **48**, 2373 (2003), K. Larin et al., *Phys. Med. Biol.* **48**, 1371 (2003).

Чувствительность энергии импульса к глюкозе

Относительная чувствительность к глюкозе

нормированная энергия импульса

отн. чувствительность

A.P. Popov at al., J. Phys. D: Appl. Phys. 38, 2564-2570 (2005).

Наночастицы ТіО₂ в роговом слое кожи

профиль распределения частиц по глубине

Расчеты факторов эффективности для частицы по теории Ми

Модель рогового слоя кожи с наночастицами

Параметры рогового слоя

λ, нм	μ_{sm} , MM ⁻¹	μ_{am} , MM ⁻¹	g_m	n _m	λ, нм	μ_{s} , MM ⁻¹	μ_a , MM ⁻¹	d, nm
310	240	60	0.9	1.53	310	517	466	62
400	200	23	0.9	1.53	400	733	31	122

В.В. Тучин 1998.

M.W. Ribarsky 1985.

Зависимость поглощения (а) внутри верхней части рогового слоя (с частицами TiO₂) и отражения (б) на длинах волн 310 (■) и 400 нм (□) от диаметра частиц

16

A.P. Popov et al., J. Biomed. Opt. 10, 064037 (2005).

Зависимость поглощения (а) и пропускания (б) всем роговым слоем (толщиной 20 мкм) на длинах волн 310 (•) и 400 нм (°) от диаметра частиц

17

A.P. Popov et al., J. Biomed. Opt. 10, 064037 (2005).

Влияние частиц TiO₂ оптимальных размеров на прохождение излучения с длинами волн 310 (а) и 400 нм (б) через роговой слой кожи

A.P. Popov et al., J. Biomed. Opt. 10, 064037 (2005). 18

ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ

- Сверхкороткие лазерные импульсы (0.1 0.5 пс) являются эффективным инструментом диагностики изменения таких параметров сильнорассеивающей среды, как коэффициент рассеяния, параметр анизотропии рассеяния и показатель преломления, имитирующих содержание глюкозы в коже в физиологическом диапазоне концентраций (0 – 500 мг/дл). При этом наиболее чувствительным параметром лазерного импульса являются его энергия при детектировании излучения, рассеянного в заднее полупространство.
- 2. Определен размер наночастиц, наиболее эффективно ослабляющих оптическое излучение при его распространении в сильнорассеивающей среде. Он зависит от длины волны излучения и соответствует положению максимума зависимости фактора экстинкции, отнесенного к диаметру наночастицы, от ее размера.
- 3. Основной вклад в ослабление излучения УФ-диапазона в сильнорассеивающей среде толщиной 20 мкм, моделирующий роговой слой кожи, вносит поглощение, при равромерном распределении наночастии

СТАТЬИ В ЖУРНАЛАХ

- A.P. Popov, A.V. Priezzhev, J. Lademann, and R. Myllylä, "TiO₂ nanoparticles as effective UV-B radiation skin-protective compound in sunscreens", *J. Phys. D: Appl. Phys.* 38, 2564-2570 (2005).
- А.П. Попов, А.В. Приезжев, Р. Мюллюля, "Влияние концентрации глюкозы в модельной светорассеивающей суспензии на характер распространения в ней сверхкоротких лазерных импульсов", *Квант. эл.* **35**, 1075-1078 (2005).
- A.P. Popov, J. Lademann, A.V. Priezzhev, and R. Myllylä, "Effect of size of TiO₂ nanoparticles embedded into stratum corneum on UVA and UVB sun-blocking properties of the skin", *J. Biomed. Opt.* 10, 064037 (2005).
- А.П. Попов, А. В. Приезжев, Ю. Ладеман, Р. Мюллюля, "Влияние нанометровых частиц оксида титана на защитные свойства кожи в УФ-диапазоне", Опт. журнал 73, 67-71 (2006).
- А.О. Рыбалтовский, В.Н. Баграташвили, А.И. Белогорохов, В.В. Колташев, В.Г. Плотниченко, А.П. Попов, А.В. Приезжев, А.А. Ищенко, А.А. Свиридова, К.В. Зайцева, И.А. Туторский, "Спектральные особенности водно-эмульсионных композитных сред, содержащих наночастицы кремния", Оптика и спектроскопия 100, 626-633 (2006).
- A.P. Popov, A.V. Priezzhev, J. Lademann, and R. Myllylä, "Advantages of NIR radiation use for optical determination of skin horny layer thickness with embedded TiO₂ nanoparticles during tape stripping procedure", *Laser Physics* 16, 751-757 (2006).