Гальванические элементы садов и огородов.

Авторы: Ковалёв Денис (8кл), Каркавин Алексей (9кл) МОУ «ПССОШ»

Эпиграф

Ничего не бойся – Ты делаешь для всех. Лишь на себя надейся И верь в большой успех. Получится, как надо, И даже сверх того. Познаний путь не гладок, Давай начнём с него!

Цель работы:

исследование различных овощей и фруктов на предмет принадлежности к источникам тока.

Задачи

- выяснить, какими величинами описывается источник тока;
- определить опытным путём возможность создания гальванического элемента из природного материала;
- установить зависимость этих величин от рода овощей, степени солености, материала и размеров электродов, расстояния между ними, глубины погружения электродов в образец;
- спланировать дальнейшую работу на основании полученных результатов

Методы исследования:

- Наблюдение.
- Эксперимент.
- Статистическая обработка данных.

Объекты исследования:

Лимон, огурец, апельсин, помидор солёный, картофель, свёкла, морковь.

Предмет исследования:

ЭДС источника тока.

Методика исследования:

 измерение ЭДС в овощах проводилось по принципу измерения напряжения в гальванических элементах.

Теоретические основы:

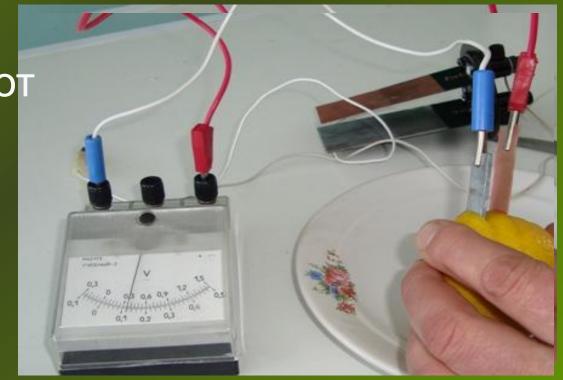
Источник тока – устройство разделяющее положительные и отрицательные заряды.

Источник тока создает электрическое поле, заставляющее заряженные частицы двигаться по цепи.

Источник тока характеризуется ЭДС (электродвижущей силой), которая измеряется в вольтах.

Первый опыт

Цель: выяснить зависимость ЭДС источника тока от расстояния между пластинами.

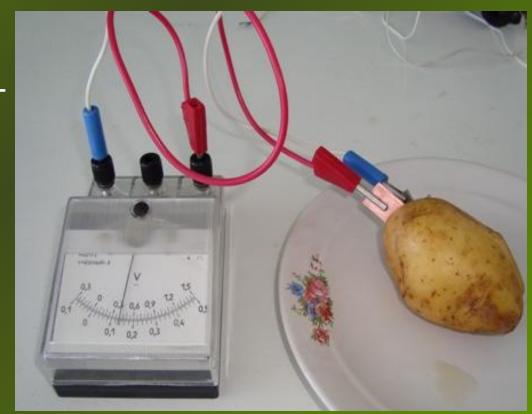

значение ЭДС не зависит от расстояния между пластинами.

		Cu и Zn		
№ опыта	Экспериментальный образец.	0,5 см	1 см	2 см
		эдс, в		
1.	Солёный огурец цельный	0,8	0,85	0,8
2.	Тёртый солёный огурец в собственном соку	0,85	0,9	0,85
3.	Огуречный рассол	0,9	0,9	0,9
4.	Свежий огурец	0,45	0,45	0,4

12

Второй опыт.

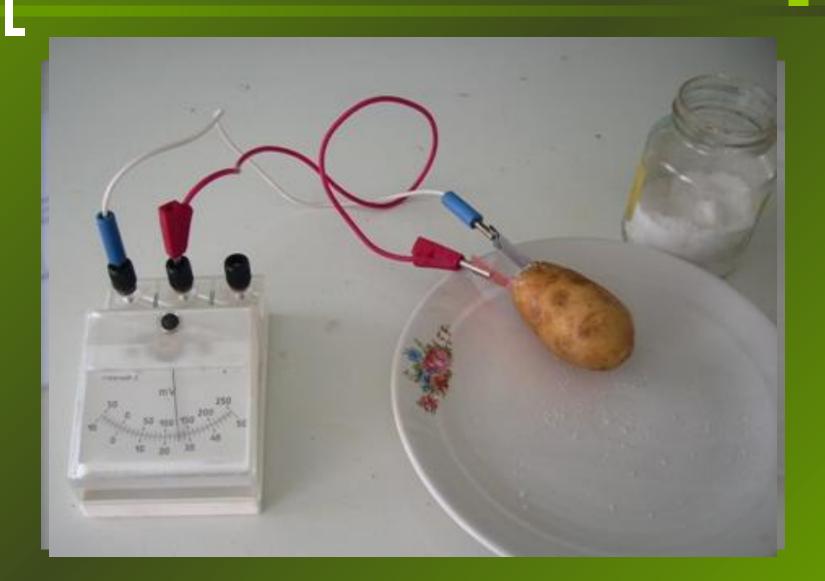
Цель: выяснение зависимости значения ЭДС от глубины погружения стержней.



значение ЭДС в большинстве случаев <u>не</u> зависит от глубины погружения пластин.

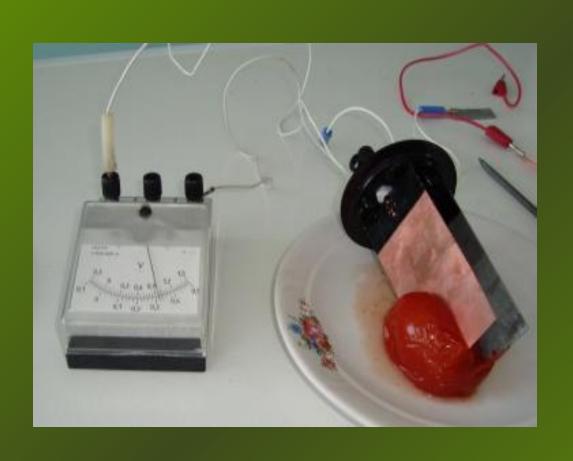
№ опыта	Экспериментальный образец.	Cu и Zn			
		1 см	2 см	3 см	4 см
		эдс, в			
1.	Картофель	0,4	0,45	0,4	0,45
2.	Картофель солёный	0,6	0,65	0,65	0,65
3.	Морковь	0,012	0,014	0,014	0,014
4.	Помидор солёный	0,95	0,9	0,95	0,95
5.	Свёкла	0,014	0,014	0,012	1,014
6.	Огурец	0,45	0,45	0,4	0,4
7.	Лимон	0,4	0,35	0,4	-
8.	Апельсин	0,5	0,6	0,6	0,7
9	Яблоко	0,3	04 1	1 ^{0,3}	0,35

Третий опыт


Цель: выяснение зависимости значения ЭДС от рода вещества пластин.

значение ЭДС зависит от рода вещества пластин.

№ опы та	Экспериментальный образец.	Цинк и медь	Железо и медь.	Алюминий и медь.	Угольный стержень и цинк.
1.	Солёный огурец цельный	0,85	0,1	1,2 B	1,1
2.	Тёртый солёный огурец в собственном соку	0,9	0,15	1,2 B	1
3.	Огуречный рассол	0,9	0,1	1,2 B	1,1
4.	Свежий огурец	0,45	0,06	0,7 B	0,45


от тыт 4. Зависимость ЭДС от солености и кислотности раствора.

вода из водопровода – **«электролит»**

№ опыта	Экспериментальный образец.	ЭДС, В			
		Медь и цинк	Уголь и цинк	Железо и цинк	
1.	Вода фильтр «Аквафор»	0,6	0,6	0,3	
2.	Кипяченая вода	0,5	0,5	0,2	
3.	Вода из крана	0,65	0,65	0,3	
4.	2 % раствор соли	0,8	0,85	0,4	
5.	10 % раствор соли	0,85	0,85	0,45	
6.	2 % раствор уксусной кислоты	0,85	0,75	0,4	
7.	10 % раствор уксусной кислоты	1,10	1,05	0,5	
8.	Огуречный рассол	0,95	0,7518	0,45	

практического применения электрических свойств овощей

Несмотря на высокое значение ЭДС у некоторых образцов, мы не СМОГЛИ использовать помидор и огурец для питания лампочки от карманного фонаря.

Последовательное включение источников

Последовательное включение источников

Но лампочка от карманного фонаря «упорно не хотела гореть».

Последовательное включение источников

миллиамперметр «с трудом» зафиксировал ток в цепи.

- Параллельное подключение источников тока.

При этом виде соединения ЭДС не изменилась ЭДС = ЭДС ₁

Выводы:

- ЭДС не зависит от расстояния между электродами и глубины их погружения в образец
- ЭДС определяется родом вещества электродов и химическими свойствами (кислотностью и концентрацией солей) веществ, в которые электроды погружены.
- Установлено правило определения ЭДС для последовательного и параллельного соединения источников тока
- Выбрано направление дальнейшей работы усовершенствование химических гальванических элементов (самодельных).

Литература:

- 1. Джанколи Д. «Физика»; Москва, «Мир», 1998 год.
- 2. Енохович А. С. справочник по физике; Москва, «Просвещение», 1990 год
- 3. Алексеева М.Н., Физика юным Москва, «Просвещение», 1980 год
- 4. Класс!ная физика ____ 8 класс.htm

Что получилось? – не судите строго. Корабль, что строю, в начале пути. Я начинаю лишь с немногого, Но много больше предстоит пройти...