ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ НАНОТЕХНОЛОГИИ

Профессор Н.Г. Рамбиди

7. Нанотрубки

Структура нанотрубок

Bonds in atoms and molecules

lonic bonds

NaCl

Covalent bonds

Metallic Bonds

See HB notes

· Van der Waals bond

$$N_2 - N_2$$

Coloumb interaction between oppositely charged ions

Shared valence electrons (strength depends on distance)

Delocalised electrons spreading over the entire crystal

Dipole-dipole attraction (fluctuating dipoles, 1/1000 strength of covalent bonds)

Periodic Table

*lanthanoids

**actinoids

lanthanum 57	cerium 58	preseodymium 59	neodymium 60	promethium 61	sanserium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	ertsium 68	thulium 69	ytterbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	168.93	162.50	164.93	167.26	168.93	173.04
actinium 89	thorium 90	protactinium 91	92	neptunium 93	pkronium 94	amencium 95	96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Diamond and graphite

sp² hybridisation

- Graphite is a stack of single "graphene" sheets
- In graphene the electron bonds hybridize; they form three identical "sigma" orbitals at 120 degrees to each other.
- Each bond originates from one s and two p orbitals (sp²). The remaining p orbital is perpendicular to the plane, called a π-bond (pi).
- The strength of the π bond (van der Waals bond) is much weaker than the σ bond (covalent)
- Electrons are delocalized in pi-bonds current can flow in the graphene layer

σ and π -bonds

 π bonds (weak)

sp² hybridised. bonds (strong)

sp2 carbon sp2 carbon

Carbon-carbon double bond

Things silicon cannot do!

WHAT IS SPECIAL ABOUT C

- ·C can form chains with itself
- C forms stable compounds with many elements (N, O, H) but preferrably itself
- C does not bind too strongly to O - does not oxidise, like silicon and many other solids
- ...on the other hand it forms strong bonds with hydrogen (important for terminating "loose ends")

Things silicon absolutely cannot do!

Carbon sooth...?

Carbon's allotropic forms

Rolling a sheet of graphene

- Nanotubes can be rolled in different angles between 0 and 30 degrees.
 - They are classified by the chirality vector given by the base lattice vectors a₁ and a₂: C = n a₁+m a₂

Other types of nanotubes

C60

Multi-walled nanotube (MWNT)

- •5-50 walls interspacing: 3.5 nm (like graphite)
- diameters normally around 10-50 nm (can be up to 200 nm)
- •Can be very long, several 100 μm
- Walls slide easily inside each other (like graphite)
- The layers have independent chiralities (one may be armchair, the next zig-zag)

Nanotube rope

- Like graphite, the layers slide easily on each other
- Stick together by van der Waals forces

Rope of nanotube

Multiwalled nanotubes

Методы формирования

Methods for fabrication of nanotubes

Arc discharge

 Carbon is evaporated by a plasma of Helium. This is ignited by a high current passing through a graphite anode and cathode

Laser evaporation

 Direct laser vaporization of transitional metal (e.g. Co-Ni,1%) graphite composite electrode targets is done in helium atmosphere at high temperatures (1200°C).

Chemical vapor deposition

 Organic gas is decomposed (e.g. Methane) in an oven containing catalyst particles, at 600-800C. The diameter and type of catalyst particles determine the nanotube diameter and properties.

Arc discharge

Result: Pure SWNT and MWNT of high quality

Laser ablation

Result: Pure SWNT and ropes of high quality

Chemical vapor deposition (CVD)

CVD

- A hydrocarbon gas is decomposed at a high temperature
- Carbon diffuses into catalyst particle
 Ni, Fe and is expelled in form of a nanotube

MWNT:

Acetylene, 600 – 800°C.

SWNT

 Carbon monooxide, 900 – 1200°C (SWNT have higher formation energy)

Result:

- SWNT and MWNT of moderate quality
- Many impurities and defects
- large quantities, can be lithographically positioned

Chemical vapor deposition

'Base' Growth Model

TEM data showing particle-tube relation

The catalyst particles grow from the base, and keep growing as long as the process continues and the catalyst is not encapsulated by carbon soot

Chemical vapor deposition

Catalyst printing

- Catalyst material is lithographically deposited on a surface. The nanotubes grow straight up in thick ropes matching the footprint of the catalyst
- Applications> field emission displays .

Свойства нанотрубок

Friction

- The nanotubes were pushed on a graphite surface with an AFM tip.
- Whenever the tubes aligned with the graphite lattice, the friction coeffcient went orders of magnitude up...
- Friction due to lattice lock-in
- FRICTION IS DIFFERENT AT NANOSCALE

Mechanical properties: tensile strength

J. Cumings and A. Zettl, Science 289, 602 (2000).

Pulling a multiwalled nanotube

- The inner tube is dragged out of the outer shell – like a telescope
- When the tube breaks, the remainder snaps back into its shell
- Difficult to measure tensile strength

Defects degrade the strength

 – CVD MWNT much weaker due to high defect densities

Tensile strength

Youngs modulus

- SWNT: 1.3 TPa

- MWNT: 1 Tpa

Tensile strength

- 30-60 GPa

- Theory: 200 GPa

Mechanical properties

Youngs modulus: 1 TPa (MWNT, SWNT)

Mechanical properties

Material	Youngs modulus (Gpa)	Tensile Strength (Gpa)	Density (g/cm3)
Silicon	47	1 (brittle!)	2.3
Steel	208	0.4 (ductile)	7.8
Carbon Nanotubes	1000 (MWNT), 1300 (SWNT)	30-60* Theory: 150-200	1.3

Nanotubes 100 times stronger than steel and 6 times lighter
Nanotubes can sustain a large tensile strain:
5% (SWNT)
10% (MWNT)

Deformation of nanotubes

Deformation of nanotubes

- Nanotubes can be deform plastically - reversibly
 - Do not break by bending
 - Deform with little fracturing: stress is compensated by rearrangement of carbon atoms
 - Full recovery upon release

By the way: what happens to the electrical transport???

Области применения

Nanotube display

Carbon nanotube arrays

- Nanotubes can conduct very high current densities
- NT are very sharp (field intensity depends on tip sharpness)
- Ideal properties for field emitters
- Prototypes already made (5 inch color and 14 inch grayscale)

Nanotube transistor

FIELD EFFECT TRANSISTORS

Nanotubes for Electronics (Collins and Avouris, Scientific american)

Nanotube transistor (IBM)

NANO TWEEZERS

Nanotube Nanotweezers", P. Kim and CM Lieber, Science 286, 2148 - 2150 (1999).

More on this in lecture 4

A real nanotube stiftblyant

A nanotube at the end of an AFM:

- High aspect ratio
- Nanolithography
- Conducting AFM/STM

Nanotube AFM (Popular article)

Nanotube AFM (Lieber, Harvard)

Nanotube pencil (Dai, Stanford)

Nanotube hearing aid

Cross-section through cochlear canal (Eckert 1988)

(Alec N. Salt, Washington University)

Stereocilia (Pickles 1988)

Nanotube hearing aid

- Highly ordered arrays of parallel carbon nanotubes grown by CVD
- Claimed to be sensitive enough to pick up activity level of living cells (how does a cancer cell sound?)

A space shuttle uses 1.8 million kg rocket fuel
A space elavator uses none

What is needed

- An extremely tall base tower on Earth
- A heavy weight orbiting the Earth
- A cable that connects the tower to the weight
- A spacecraft that can ride the cable into orbit

Nanoscale materials: space elevator

NASA REPORT

- Cable length: 144000 km
- Cable material: 60 GPa tensile strength
- Base tower (anchor): 50 km
 - The tower is necessary to hold the cable
 - The cable needs to be strong, and therefore thick, and therefore heavy itself
 - Carbon nanotubes are not only just about strong enough, they are also light!

Space elevator report (NASA)

