МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

Разработка математической модели и исследование характеристик системы автоматического слежения за задержкой сигнала СРНС

студент : Сан Вин Маунг.

Научный

руководитель: Замолодчиков В.Н. проф. к.т.н.

постановка задачи

Изучение принципов построения СРНС.
Разработка математической модели системы слежения за задержкой сигнала СРНС.
Реализация и отладка модели в среде MatLab.
Анализ статистических характеристик временных дискриминаторов когерентного и некогерентного приемника.
Анализ переходных характеристик линейных фильтров.
Моделирование переходных характеристик систем ССЗ с использованием идеальных дискриминаторов.
Исследование переходных характеристик систем ССЗ с использованием моделей дискриминаторов.
Сравнение характеристик ССЗ с фильтрами второго и третьего порядков.
Γ

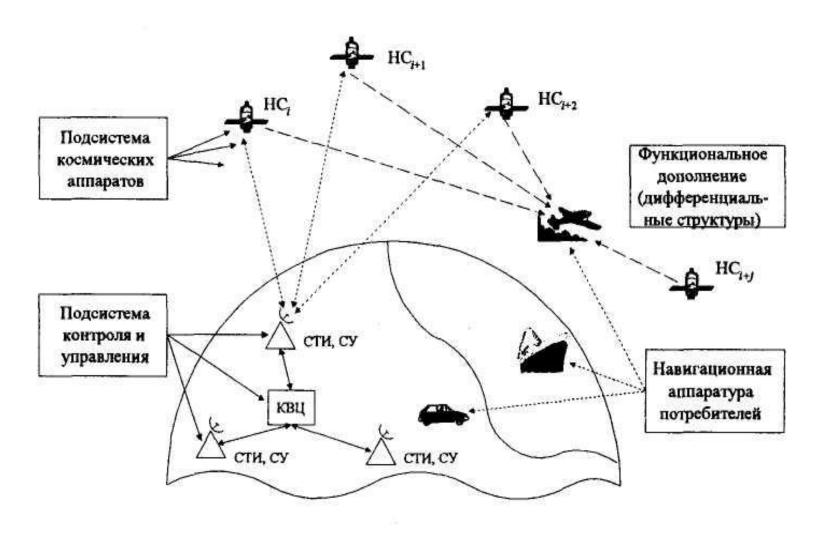


Рис. 1 Глобальная спутниковая радионавигационная система

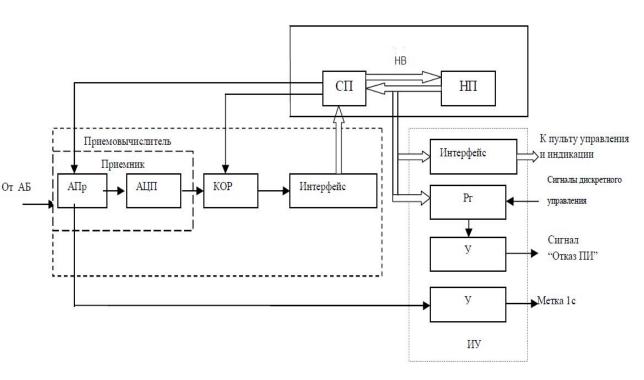


Рис. 2 Схема приемовычислителя

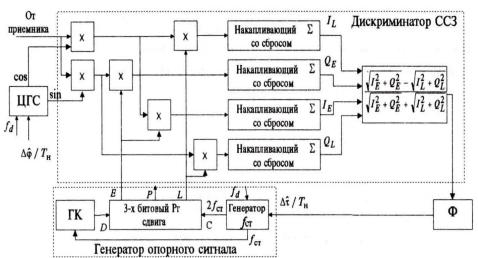
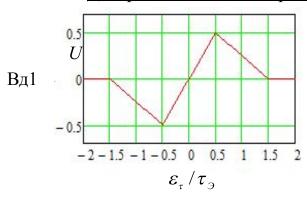



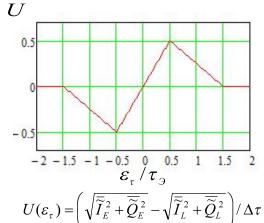
Рис.3 Схема ССЗ

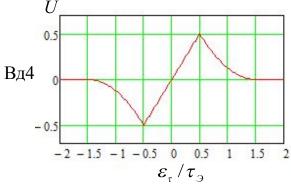
1. ИССЛЕДОВАНИЕ ДИСКРИМИНАТОРОВ

Аналитические результаты для временных дискриминаторов

Дискриминационные харатеристики когерентного приемника

$$u_{\partial \tau}(t_k) = (I_{E,k} - I_{L,k}) sign(I_k).$$


$$u_{\partial\tau}(t_k) = I_k(I_{E,k} - I_{L,k}),$$


(а) при большом отношеним с/ш

(б) при малом отношеним с/ш

Дискриминационные харатеристики некогерентного приемника

Вд3

$$U(\varepsilon_{\tau}) = \left| \left(\overline{\widetilde{I}}_{E}^{2} + \overline{\widetilde{Q}}_{E}^{2} \right) - \left(\overline{\widetilde{I}}_{L}^{2} + \overline{\widetilde{Q}}_{L}^{2} \right) \right| / \Delta \tau$$
 (б) при малом отношенимс/ш

(а) при большом отношеним с/ш

Рис.4.Дискриминационные харатеристики временных дискриминаторов

Т1. Характеристики дискриминаторов задержки огибающей сигнала

No	Отношение сигнал/шум	Алгорит м ВД	крутизна $S_{\mathcal{J}}$	Апертура ДХ (по первым нулям)	Дисперсия шума на выходе дискриминаторе	дисперсия, приведенная ко входу дискриминатора [c]
вді	$u_{\partial z}(t_k) = (I_{E,k} - I_{L,k}) sign(I_k).$	при малом q	$\frac{8q_{\varepsilon/n_0}^2T^2\cos^2(\varepsilon_{\varphi})}{\tau_{\mathfrak{z}}}$	±173	$16q_{\epsilon/n_0}^3 T^3 \left(1 + \frac{1}{2q_{\epsilon/n_0}T}\right)$	$\frac{\tau_s^2}{4q_{\varepsilon/n_0}T\cos^2(\varepsilon_{\varphi})}\left(1+\frac{1}{2q_{\varepsilon/n_0}T}\right)$
ВД2	$u_{\partial z}(t_k) = I_k (I_{E,k} - I_{L,k}),$	при большом q	$\frac{4q_{\varepsilon/n_0}T\cos(\varepsilon_{\varphi})}{\tau_{\mathfrak{z}}}$	± (3/2)* τ ₃	$4q_{\epsilon/\eta_0}T$	$\frac{\tau_{\mathfrak{s}}^2}{4q_{\mathfrak{c}/n_0}T\cos^2(\varepsilon_{\varphi})}$
вдз	$U(\varepsilon_{\varepsilon}) = \left(\sqrt{\widetilde{I}_{E}^{2} + \widetilde{\widetilde{Q}}_{E}^{2}} - \sqrt{\widetilde{I}_{L}^{2} + \widetilde{\widetilde{Q}}_{L}^{2}}\right) / \Delta t$	при малом q	$\frac{8q^2_{\varepsilon/n_0}T^2\mathrm{sinc}^2(\varepsilon_{\omega}T/2)}{\tau_{\mathfrak{s}}^2}$	± (3/2)*τ ₉	$\frac{16q_{c/n_0}^3 T^3 \operatorname{sinc}^2(\varepsilon_{\omega} T/2)}{\tau_s^2}.$ $\left[1 + \frac{2}{q_{c/n_0} T \operatorname{sinc}^2(\varepsilon_{\omega} T/2)}\right]$	$\frac{\tau_s^2}{4q_{\varepsilon/n_0}T\mathrm{sinc}^2(\varepsilon_\omega T/2)}.$ $\left[1 + \frac{2}{q_{\varepsilon/n_0}T\mathrm{sinc}^2(\varepsilon_\omega T/2)}\right]$
ВД4	$U(\varepsilon_{\varepsilon}) = \left\ \left(\overline{\widetilde{I}}_{E}^{2} + \overline{\widetilde{Q}}_{E}^{2} \right) - \left(\overline{\widetilde{I}}_{L}^{2} + \overline{\widetilde{Q}}_{L}^{2} \right) \right\ / \Delta \tau$	при большом q	$\frac{4q_{\varepsilon/n_0}T \mathrm{sinc}(\varepsilon_\omega T/2) }{\tau_{\mathfrak{s}}^2}$	± (3/2)*τ ₃	$\frac{4q_{c/n_0}T}{\tau_s^2}$,	$\frac{\tau_{s}^{2}}{4q_{\varepsilon/n_{0}}T \mathrm{sinc}^{2}(\varepsilon_{\omega}T/2) }$

2. ИССЛЕДОВАНИЕ ФИЛЬТРОВ

Аналитические решения для переходных процессов ССЗ

ССЗ с непрерывным фильтром второго порядка при $\sigma_a = 0.1 mc^{-2}$, $q_{c/n_0} = 45 \partial E \Gamma u$, $(\Delta F_{32,CC3} = 0.13 \Gamma u)$.

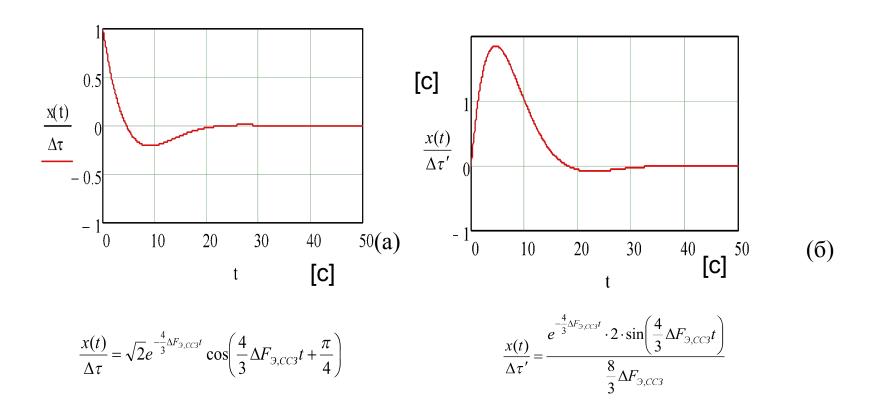


Рис. 5 Переходный процесс ССЗ (а) при ступенчатом входном воздействии, (б) при линейном входном воздействии

Результаты моделировиния линейного дискретного фильтра второго порядка коэффициенты фильтра соответствуют параметрам $\sigma_a = 0.1 mc^{-2}, \quad q_{c/n_0} = 45 \partial \mathcal{B} \Gamma \psi. \quad (\Delta F_{92,CC3} = 0.13 \Gamma \psi)$

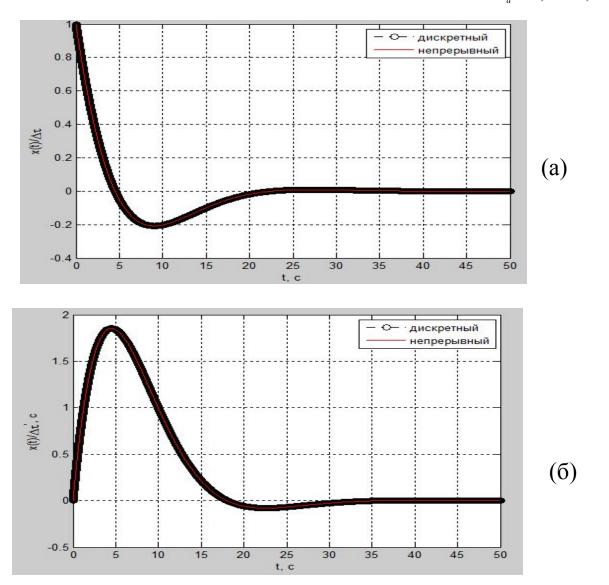


Рис. 6. Переходный процесс в дискретной модели ССЗ (а) при ступенчатом входном воздействии (б) при линейном входном воздействии

ССЗ второго порядка

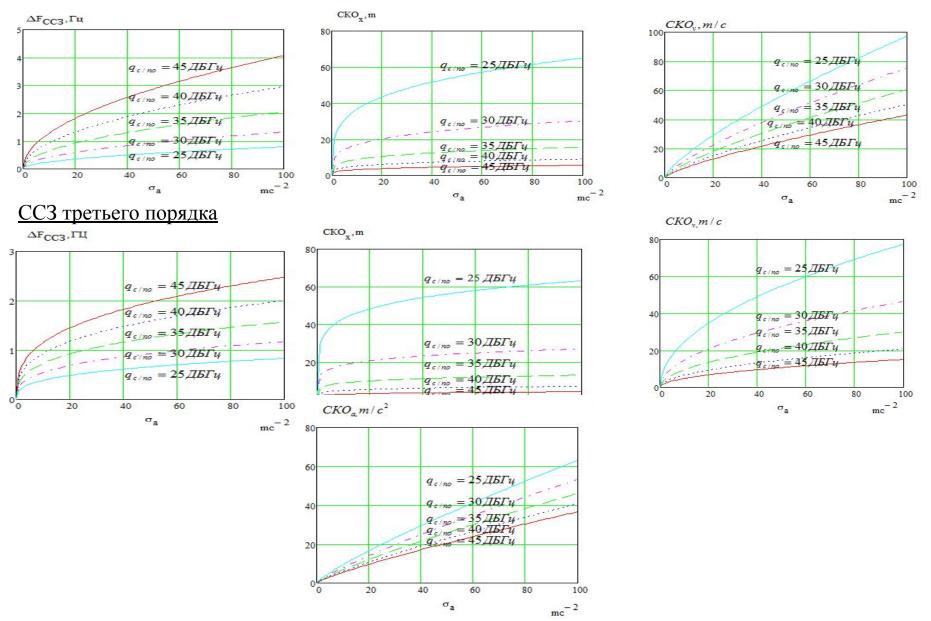


Рис.7. Аналитическое сравнение точностих характеристик ССЗ второго и третьего порядков

Исследование ССЗ с фильтром второго порядка

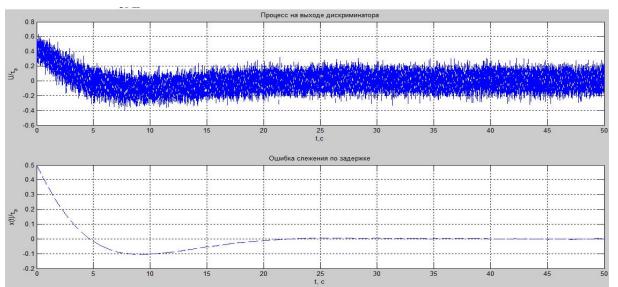


Рис.8.Процесс на выходе ВД и ошибка слежения для ступенчатого входного воздействия , при $r(t) = 0.5\Delta \tau \cdot 1(t)$ критическое значение линейного участка дискриминационной характеристики. $(\sigma_a = 0.1mc^{-2}, q_{c/n_0} = 45\partial E\Gamma u)$.

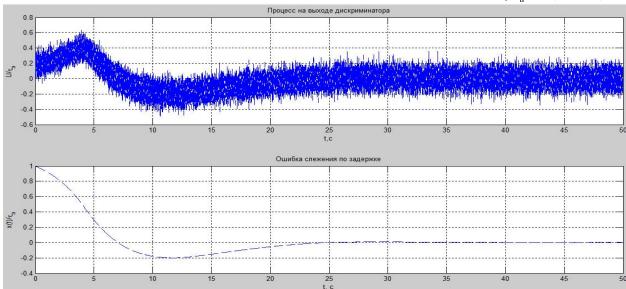


Рис.9. Процесс на выходе ВД и ошибка слежения для ступенчатого входного воздействия ,при слежения $r(t) = 1 \cdot \Delta \tau \cdot 1(t)$ находится в пределах линейного участка дискриминационной характеристики. $(\sigma_a = 0.1mc^{-2}, q_{c/n_0} = 45\partial \mathcal{B}\Gamma u)$.

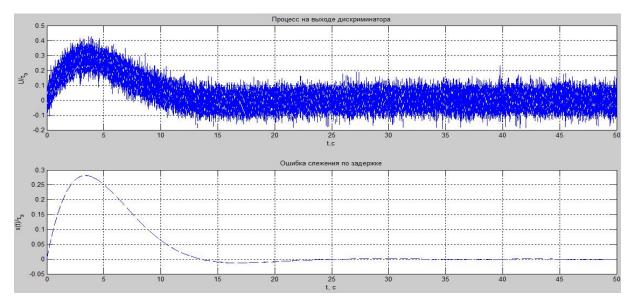


Рис.10.Процесс на выходе ВД и ошибка слежения для линейного входного воздействия , при $r(t) = 0.2 \frac{MKC}{C} \cdot t$ ошибка слежения из линейного участка дискриминационной характеристики. ($\sigma_a = 0.1 mc^{-2}$, $q_{c/n_0} = 45 \partial E \Gamma u$).

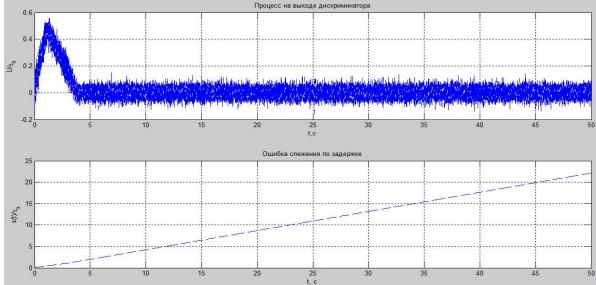


Рис.11.Процесс на выходе ВД и ошибка слежения для линейного входного воздействия , при r(t) \overline{e} рь $\frac{MKC}{C} \cdot t$ слежения) $(\sigma_a = 0.1 mc^{-2}, q_{c/n_0} = 45 \partial E \Gamma u)$.

11

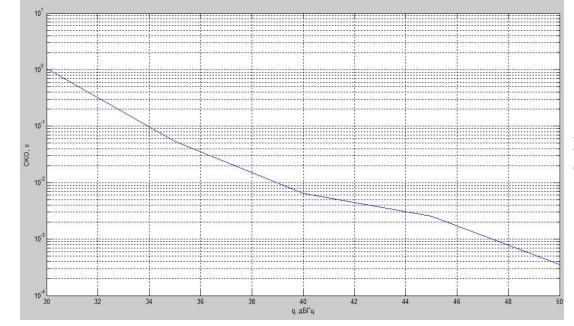
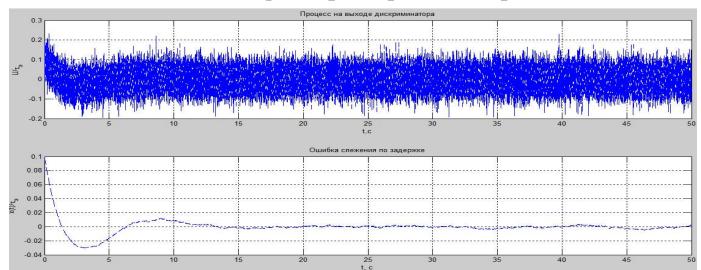
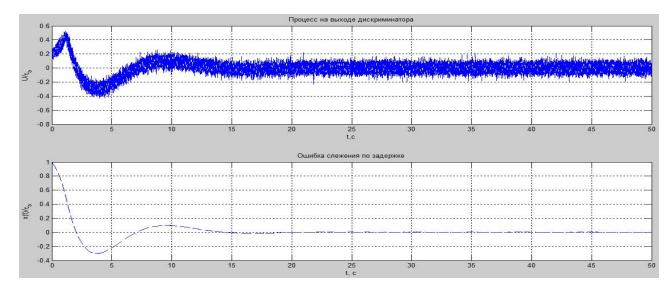
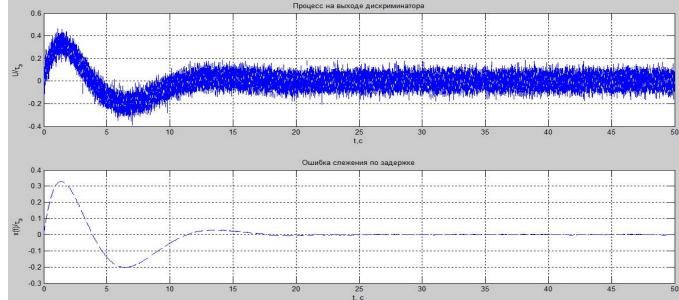



Рис.12. Зависимость СКО ошибки фильтрации от отношения сигнал/шум


Исследование ССЗ с фильтром третьего порядка


При.13.Процесс на выходе ВД и ошибка слежения для ступенчатого вход-ного воздействия , при ошибка слежения находится в пределах линейного участка дискриминационной характеристики. $(\sigma_{_a}=0,1mc^{^{-2}},\ q_{_{c/n_0}}=45\partial E\Gamma u).$

 $r(t) = \Delta \tau 0.1(t)$

12

При.14.Процесс на выходе ВД и ошибка слежения для ступенчатого вход-ного воздействия , при $r(t) = \Delta \tau 1(t)$ начальная ошибка выходит из линейного участка дискриминационной характеристики. ($\sigma_a = 0.1 mc^{-2}, q_{c/n_0} = 45 \partial E \Gamma u$).

При.15.Процесс на выходе ВД и ошибка слежения для линейного вход-ного воздействия , при $r(t) = 0.55 \frac{MKC}{QUIII}$ бка слежения лежит в пределах из линейного участка дискриминационной характеристики $(\sigma_a = 0.1 mc^{-2}, \ q_{c/n_0} = 45 \partial B \Gamma u).$

В работе изложены принципы построения спутниковой
радионавигационной системы, приведены основные сведения о
параметрах систем ГЛОНАСС.
Рассмотрены особенности построения различных вариантов
временных дискриминаторов и фильтров.
Выполнено аналитическое сравнение точности ССЗ с фильтром
второго и третьего порядков.
Разработаны математические модели системы ССЗ.
Выполнены реализации моделей в среде MatLab.
Проведена отладка математической модели путем сравнения
результатов моделирования с известными аналитическими
результатами.
Получены переходные характеристики цифровых фильтров
систем ССЗ, второго и третьего порядков.
На разработанных математических моделях, выполнено
сравнение характеристик систем ССЗ второго и третьего
порядков.

Спасибо за Внимание