
Спрос и потребление энергии в 2050г.

П.Р. Бокис

Москва, Санкт- Петербург февраль 2002г.

Темпы роста народонаселения мира после 1970

При рассмотрении « доказанных запасов » возникает ощущение растущего изобилия

	19	73	2000			
	млрд.т. на сколько лет потребления		млрд.т.	на сколько лет потребления		
Запасы нефти (в мире)	86	30	140	40		
Запасы газа (вмире)	52	48	140	65		

Вид « надводной части айсберга » наводит нас на мысль, что мы располагаем огромными и все увеличивающимися запасами и что беспокоится не о чем

Рассмотрение « подводной части айсберга » наталкивает на другие мысли

Истинные запасы нефти обычных сортов

1973

2000

млрд. брл.

2000 - 3000

2000 - 3000

С 1973 по 2000 гг. в оценке объема истинных окончательных запасов нефти обычных сортов практичеси не произошло никаких изменений

Электричество, полученное из возобновляемых источников в 1995-2050 *

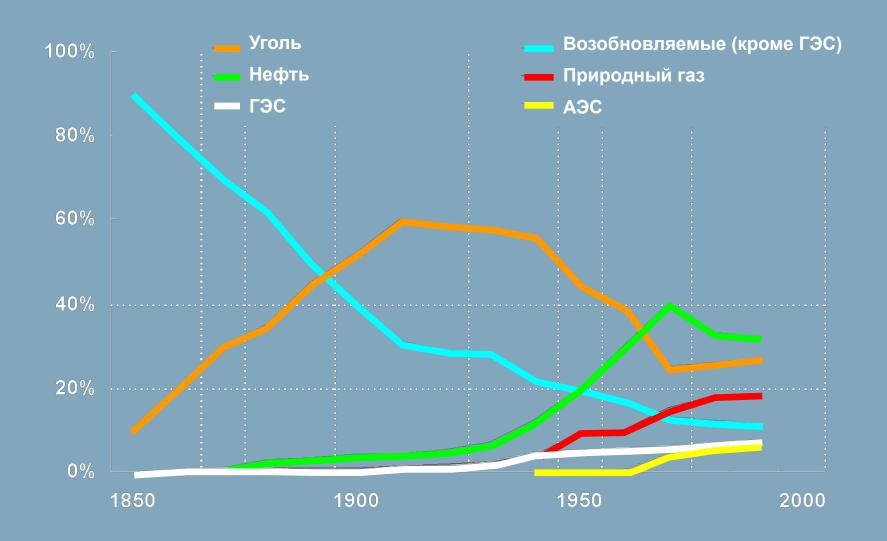
		вленная ость МВт	Производимая энергия (трлн. Вт.ч)		
Данные : « Ревю де л ' Энержи », 50 лет, № 509	1995	2050	1995	2050	
сентябрь 1999	700.000	1.000.00	2.400	3.000	
Ветровые ЭС	5.000	200.000	10	500	
Электростанции на биомассе	10.000	100.000	50	500	
Геотермические ЭС	7.000	20.000	30	100	
ЭС на солнечной энергии	600	20.000	1	100	
Солнечные теплостанции	-	30.000	10	50	
Итого	722.600	1.350.00	2.501	4.250	

^{*} для удобства сравнения энергия, произведенная АЭС и электростанциями, использующими возобновляемые источники энергии (95% которой приходится на долю крупных ГЭС), условно рассматривается как энергия, произведенная ТЭС с к.п.д. 40%(стандарт эквивалентности, принятый в концерне ТотальФинаЭльф).

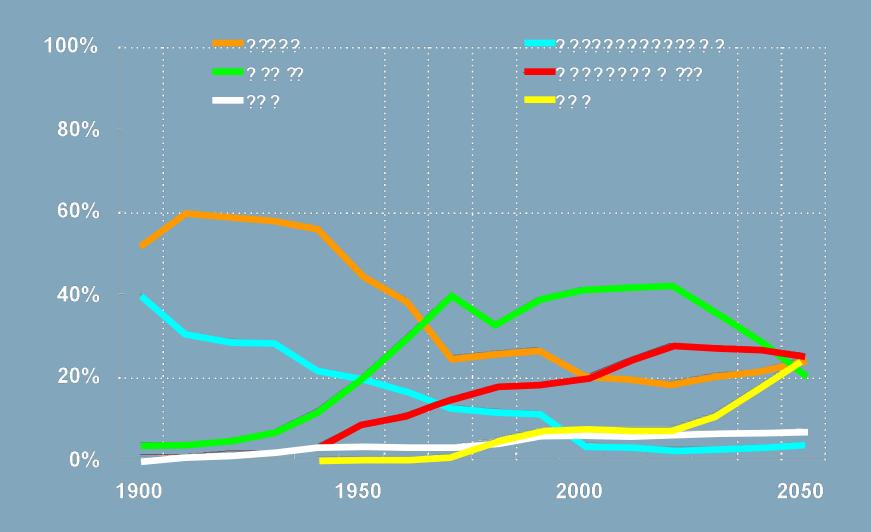
Электричество, полученное из возобновляемых источников в 1995-2050 *

	Произведенная электроэнергия в трлн. Вт.ч. в млрд.т. н.э. *			Итого % от электропотре- бления 2050		Итого % от общего энерго- потребления		
	1995	2050	1995	2050	1995	2050	1995	2050
Электропотребление (независимо от источника) ГЭС ** Другие возобновляемые	13 000 2 400 100	42 000 3 000 1 250	2.8 0.5 0.02	9.0 0.6 0.3	100% 18.0% 0.8%	100% 7.0% 3.0%	34.0% 6.5% 0.3%	50.0% 3.5% 1.5%
Итого возобновляемые	2 500	4 250	0.52	0.9	18.8%	10.0%	6.8%	5.0%

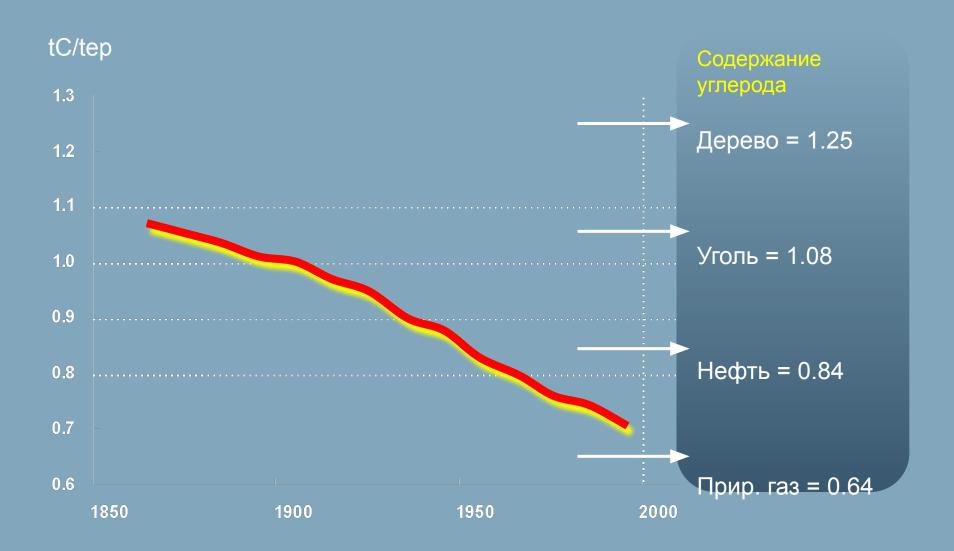
^{*} для удобства сравнения энергия, произведенная АЭС и электростанциями, использующими возобновляемые источники энергии, условно рассматривается как энергия, произведенная ТЭС с к.п.д. 40%(стандарт эквивалентности, принятый в концерне ТотальФинаЭльф).


** из них 95% приходится на долю крупных ГЭС

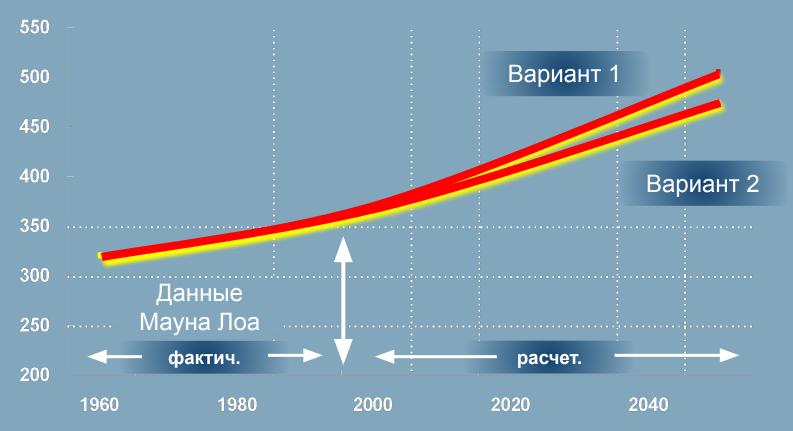
Global Foundation - November 26/28, 2000


Взгляд на энергетический баланс 2000 - 2020 -2050

	2000		2020		2050	
Данные : « Ревю де л 'Энержи » , 50 лет, № 509 сентябрь 1999	Млрд .т.	%	Млрд .т.	%	Млрд .т.	%
Нефть	3.7	40	5.0	40	3.5	20
Газ	2.1	22	4.0	27	4.5	25
Уголь	2.2	24	3.0	20	4.5	25
Итого ископаемые виды энергии	8.0	86	12.0	87	12.5	70
Возобновляемые виды энергии, в том числе в производстве электричества	0.7 (0.5)	7.5	(0.7)	6.5	1.5 (0.9)	8
Ядерная энергия	0.6	6.5	1	6.5	4	22
Итого по всем видам энергии	9.3	100.0	14.0	100.0	18.0	100.0


Источники первичных видов энергии (в мире): 1850 - 1990

Источники первичных видов энергии (в мире): 1990 - 2050


Содержание углерода в различных видах энергии - Мировое потребление 1850 - 1990

0PRB9 01.ppt - Pierre René BAUQUIS

Прогноз выброса СО, в атмосферу

CO₂ частей на млн.

Вариант 1: 1 млрд.т. углерода дает выброс CO₂ в атмосферу, равный 0.277 частей на млн. Hypothèse 2: 1 млрд.т. углерода дает выброс CO₂ в атмосферу, равный 0.228 частей на млн.

Оптимальное использование каждого источника энергии

- 1. Запасы жидких углеводородов ограничены, поэтому лучше использовать их в тех областях, где максимально проявляются их полезные качества (высокая энергоемкость и богатый химический состав), а именно:
 - на транспорте (наземном, воздушном и морском)
 - в качестве сырьевого материала в нефтехимии, химии, при производстве битумов, растворителей и т.д.
- 2. Использование жидких углеводородов для производства тепла и электроэнергии нецелесообразно (за исключением пользователей, расположенных вдали от энергетических сетей или лишившихся сетевого питания в результате аварии)
 - во многих случаях газ является удачным альтернативным решением в среднесрочной перспективе, но после 2050 года, вероятно, возникнут проблемы в связи с истощением его запасов
 - в других случаях ядерная энергия и на сегодня уже представляет собой оптимальный вариант для развитых стран с высокой « культурой безопасности », а завтра (2030-2050 гг) ее применение станет еще более широким (безопасные миниатюрные реакторы)

Области взаимного дополнения в 2050 г и позже

- 1. Для добычи трудноизвлекаемых углеводородов из содержащей их породы потребуется большое количество энергии (закачка пара и других теплоносителей в пласт, термическая обработка на поверхности в случае добычи шахтным способом, и, если мы хотим ограничить выброс CO₂ в атмосферу, то целесообразно использовать для этого ядерную энергию (реакторы типа HTR?).
 - Повышение коэффициента нефтеотдачи на крупных месторождениях «классического» типа и, в первую очередь, на месторождениях с вязкой и сверхвязкой нефтью (Атабаска, Ориноко) за счет «ядерных» калорий
 - Возможность сделать экономически рентабельной разработку горючих сланцев и гидратов газа (??)
 - Возможность оптимизировать технологию производства жидких у.в. из газа или угля с использованием водорода, ядерного происхождения: экологически чистый вариант технологии Фишера Тропша
- 2. Кроме того водород ядерного происхождения может быть с успехом использован для нужд нефтепереработки и нефтехимии

Парадоксы водорода в долгосрочной перспективе развития

Водород с точки зрения основных экономических показателей

- 1. Производство водорода и сегодня, и в будущем дорогое удовольствие:
 - На сегодняшний день (и такое положение сохранится вплоть до 2030-2050 гг.) водород получают из ископаемых энергоносителей, при этом стоимость энергетической единицы водорода в 5-10 раз выше, чем стоимость ископаемых энергоресурсов, необходимых для его производства.
 - Завтра (скажем после 2030 года) водород все в большей степени станет производиться в ядерном секторе энергетики: методом электролиза или термического разложения молекул воды

2. Водород был, есть и останется дорогим в транспортировке и хранении

- И сегодня, и завтра стоимость трубопроводной транспортировки водорода в 10-15 раз выше, чем стоимость транспортировки аналогичного количества жидких углеводородов (с законами термодинамики не поспоришь!)
- Стоимость хранения водорода (под давлением, в криогенных емкостях, в абсорбированном виде или в виде химических соединений), возможно, несколько уменьшится, но, все равно, останется выше стоимости хранения жидких у.в.

Парадоксы водорода в долгосрочной перспективе развития

Водород и варианты его использования

- 1. Термическое использование (промышленные котельные, производство пара, электричества, отопление, кондиционирование воздуха и т.д.)
 - Водород по сравнению с электричеством является менее выгодным « энергоносителем ». Газ и электричество находятся примерно на одном уровне с точки зрения себестоимости транспортировки (как по магистральным, так и по распределительным сетям), в то время как себестоимость транспортировки/распределения водорода (и сейчас, и в будущем) в 3-4 раза выше
- **2.** Транспортное использование (наземный, воздушный и морской транспорт)
 - Основным преимуществом водорода состоит в отсутствии загрязнения атмосферы городов (используется ли он в двигателях внутреннего сгорания, турбинах или топливных элементах питания) С другой стороны высокая стоимость его транспортировки и хранения в автомобилях, самолетах и кораблях приведет к тому, что он по-прежнему будет уступать жидким у.в. с точки зрения «энергетической компактности» и стоимости хранения
- 3. Таким образом, оптимальным вариантом использования водорода для транспортных нужд, было бы производство синтетических у.в., путем его соединения с углеродом