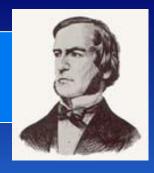


Anzeopa nozuku

Сперва хочу Вам в долг вменить На курсы логики ходить, Ваш ум, нетронутый доныне, На них приучат к дисциплине. Чтоб взял он направленья ось, Не разбредаясь вкривь и вкось.

Гёте, «Фауст»



История появления логики

- Построение и анализ логических элементов и схем ЭВМ основываются на применение формального метода математики к области логики
- Основоположником математической логики считают великого немецкого математика **Лейбница**. Это он, в XVII веке попытался построить первые логические исчисления. Он сблизил логику с исчислением, усовершенствовал и уточнил логическую символику.
- На фундаменте, заложенном Лейбницем, другой великий математик **Джордж Буль** продолжал изучать логику.

Джордж Буль

В XIXв. в трудах английского математика Дж. Буля начала формироваться новая область математических знаний - алгебра логики, созданная для решения традиционных логических задач алгебраическими методами. Он вывел для логических построений особую алгебру - алгебру логики. В ней, в отличие от обычной алгебры, символами обозначают не числа, а высказывания.

Основные формы

- Слово ЛОГИКА означает как совокупность правил, которым подчиняется процесс мышления, так и науку о правилах рассуждений. Логика, как наука о законах и формах мышления изучает абстрактное мышление как средство познания объективного мира.
- □ Основными формами абстрактного мышления являются:

понятие суждение умозаключение

Логические элементы в ЭВМ

- В основе логических схем и устройств ПК лежит специальный математический аппарат, использующий законы математической логики. Знание логики необходимо:
 - при разработке алгоритмов и программ, так как в большинстве языков программирования есть логические операции;
 - при решении задач (составлении отчетов) с условиями в электронных таблицах;
 - для построения фильтров для запросов в базах данных;
 - □ для поиска информации в Интернете.

К *основным понятиям логики* относятся следующие:

Высказывание (суждение) - некоторое предложение, которое может быть истинно (верно) или ложно. Например, высказывание «Сумма внутренних углов треугольника равна 180°» - истинно, а высказывание «Все углы треугольника - прямые» - ложно.

Истинность или ложность получаемых таким образом высказываний и соответствующей трактовки связок как операций над высказываниями.

Для обозначения истинности водится символ \mathbf{M} (или $\mathbf{1}$), а для обозначения ложности - \mathbf{M} (или $\mathbf{0}$).

Романов Константин Михайлович, учитель

Логические высказывания

Логическое высказывание — это повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Является ли высказыванием?

- □ Птицы летят на север.
- Информатика- интересный предмет.
- Сколько сейчас времени?
- Сейчас идет снег.

Основные понятия логики

- Конъюнкцией высказываний (логическим умножением) называется логическая операция, которая принимает значение истинна тогда и только тогда, когда истинны исходные логические выражения. Обозначается (Х Л У), читается «Х и У».
- Дизъюнкцией высказываний (логическим сложением) называется логическая операция, которая принимает значение истина тогда и только тогда, когда истинно хотя бы одно из исходных логических выражений. Обозначается (ХУУ), читается «Х или У».

Основные понятия логики

- Отрицание или инверсия, определяется следующим образом если выражение истинно, то результат его отрицания будет ложным, и наоборот, если исходное выражение ложно, то его отрицание будет истинным. Обозначается (¬Х), читается «не Х».
- Импликацией высказываний (логическое следование) называется логическая операция, которая принимает значение ложь тогда и только тогда, когда условие (первое высказывание) истинно, а следствие (второе высказывание) ложно. Обозначается (X ⇒ У), читается «Если X, то У».

Основные понятия логики

- Эквивалентностью высказываний называется логическая операция, которая принимает значение истинно тогда и только тогда, когда исходные выражения одновременно истинны или одновременно ложны. Обозначается (Х ⇔ У), читается «Х эквивалентно У».
- Употребляемые в обычной речи логические связки **«и», «или», «если ..., то», «эквивалентно»,** частица **«не»** позволяют из уже заданных высказываний строить новые, более «сложные высказывания. Так, из высказываний «X > 2», «X ≤ 3» при помощи связки «и» можно получить «X > 2 и X ≤ 3», при помощи связки «или» «X > 2 или X ≤ 3».

Все задачи раздела «Основы логики и логические основы компьютера» можно разделить на группы:

- на пересечение и объединение множеств;
- построение таблиц истинности выражений;
- упрощение логических формул;
- написание структурных формул для переключательных схем;
- написание логических формул по комбинационной схеме устройства;
- текстовые задачи.

При решении задач по логике необходимо помнить:

В естественном языке	В логике
и, а, но, хотя, однако	Конъюнкция
неверно, что	отрицание
или	дизъюнкция
либо, либо	сложение по mod 2 (строгая дизьюнкция)
из следует,влечеттогда, когда если, тонеобходимо	импликация
достаточно	обратная импликация
в том и только в том случаетогда и только тогда, когданеобходимо и достаточноравносильно	эквивалентность

Романов Константин Михайлович, учитель

Таблицы истинности

- Для задания функций алгебры логики иногда используют таблицы, содержащие все наборы значений переменных и значения функций на этих наборах. Это так называемый табличный способ задания функций.
- Сами же таблицы в алгебре логике называют
 таблицами истинности (истинностные таблицы).
- Так например: таблица, задающая логическое отрицание ¬X, умножение (конъюнкция) Х \ У , следования (импликация) Х⇒У, эквивалентность Х⇔У, имеет следующий вид: _____

Таблица истинности

X	y	$\neg X$	X/\	$\mathbf{X} \vee$	$X\Rightarrow$	X⇔
			y	y	y	y
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

Романов Константин Михайлович, учитель

Законы алгебры логики

$X \land Y = X \land Y$ $X \lor Y = X \lor Y$	Закон коммутативности
$(X \land Y) \land Z = X \land (Y \land Z) (X \lor Y) \lor Z = X \lor (Y \lor Z)$	Закон ассоциативности
$X \wedge (X \vee Y) = X$ $X \vee (X \wedge Y) = X$ $X \wedge (\neg X \vee Y) = X \wedge Y$ $X \vee (\neg X \wedge Y) = X \vee Y$	Закон поглощения
$ \begin{array}{c c} X \land (Y \lor Z) = (X \land Y) \lor (X \land Z) \\ \hline Z) \end{array} $	Закон дистрибутивности
	Отрицание

імихаилович, учитель

Законы алгебры логики

$X \lor 0 = X$	Свойства - операции ИЛИ, И
$X \wedge 1 = X$	
$X \lor 1 = 1$	
$X \wedge 0 = 0$	

$X \lor X = X$	Закон идемпотентности
$X \wedge X = X$	

$X \lor \neg X = 1$	Закон противоречия
$X \wedge \neg X = 0$	

$X / \nabla X = 0$	
$ \neg(X \land Y) = \neg X \lor \neg Y \neg(X \lor Y) = \neg X \land \neg Y $	Закон де Моргана

$$(X \lor Y) \land X \land \neg Y = X$$
 Закон склеивания $(X \lor Y) \land (X \lor \neg Y) = X$

Пример 1

Записать в виде логического выражения следующее высказывание: «Зимой Саша поедет в деревню и, если будет хорошая погода, то он будет кататься на лыжах»

- Проанализируем составное высказывание.
 - Оно состоит из следующих простых высказываний: «Саша поедет в деревню», «Будет хорошая погода», «он будет кататься на лыжах». Обозначим их через логические переменные:
 - А= Саша поедет в деревню;
 - В= Будет хорошая погода;
 - **С=Он будет кататься на лыжах**;
- Запишем высказывание в виде логического выражения, учитывая порядок действий. Если необходимо расставим скобки:
 - □ F=A&(B <u>C</u>)

Упражнение 1

Запишите следующие высказывания в виде логических выражений:

- Число 19 нечетное и двузначное.
- 2. Если Катя- сестра Миша, то Миша- брат Кати.
- Если число делится на 4, то оно- четное. Не переходи улицу на красный свет.
- 4. Неверно, что кролик- хищное животное.

Упражнение 2

Запишите логические выражения, соответствующие следующим высказываниям:

- Ботаника изучает растения и ботаника изучает животных.
- В состав атома входят электроны или в состав электронов входят атомы.
- Гелий- это жидкость и вода- это газ.
- Неверно, что положительный ион- это лишившийся электронов атом.

Упражнение 3

Запишите следующие высказывания в виде логических выражений:

- Если будет светить солнце, то ребята пойдут в зоопарк, а если пойдет дождь, то ребята займутся уборкой квартиры.
- Мы поедем в деревню и, если встретим там друзей, то интересно проведем время.
- Неверно, что если солнце светит, то ветер дует только тогда, когда идет дождь.

Какое из суждений ложно:

- 1) В пятеричной системе счисления2 + 3 = 10
- □ 2) 1 байт = 8 бит
- 3) Некоторые простые числа, большие 101, делятся на 3
- 4) В семеричной системе счисления
 10 нечетное число

Задача

- Закон нарушили двое из 4-х граждан:
 А, В, С, D. Напишите в алфавитном порядке без запятой кто это, если известно что:
- 1) Если нарушил А или не нарушил В,
 то нарушил С и не нарушил D
- 2) Если не нарушил D или нарушил C,
 то не нарушил A и не нарушил B

Вопросы для повторения:

- Что такое логика?
- Логическая функция- это....
- 3. Объединение двух высказываний в одно с помощью оборота «если…, то…» называется…
- Таблица, содержащая все возможные значения логических выражений называется...