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Effective Algorithm for Full Solution of Dispersive
Equation for 4-waves Nonlinear Resonances

In present report the algorithm for solving
4-waves dispersive equation are proposed. We
consider both asymmetric and symmetric cases.
The set of asymmetric solutions is generated by
effective algorithm, and the set of symmetric
solutions is described as the solutions series
defined parametrically.



Problems Definition

The system of equations for the problem:

Let
af
k =(m,n)

m,n € Integer

ki=(m,n), ky=(m,,n,), ky =(my,n3), k, =(my,n,)
df
w(k)=(m* +n*)"*

Given:

Ky +ky = ky + K, R

(k) +o(k,) = o(k;) +o(ky) (2)
mnef-D_.  ,D

max’ maxl

(3)

Find:
All k,k,,k;,k, satisfies (1)-(3)
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Problems of present report

The set of all solutions can be classified as
e the set of asymmetric solutions,
e the set of symmetric solutions.

Symmetric solution — parametrically defined series (example)
ki= (a,b), ko = (b,a), ks = (-a,-b), ks =(-b,-a); a, b € N.
Asymmetric solution (example)
k, = (256,512), k, = (1980,360), ks = (800,400), k, = (1436,472)
Algorithms described in [1-4] generate both symmetric and asymmetric solutions.

e The number of symmetric solutions is very large, so the time of algorithm’s
execution 1s large too.

e The analysis of results in mixed list 1s essentially complicated
So we must
1. To build algorithm generates only the base set of asymmetric solutions

2. To describe parametrically all series of symmetric solutions



1. Group of symmetries of model (1)-(3)
Definition 1

Letdefine group G of model (1).(2) on domain (3) as follows:
1. Element of the group G _ is «signed substitution»

((ml m) (my ) (my m) (my m)]

(h. sp (n s9) (B s3) (g 54

| Emy _xmy
where 7; = S;=

T, + 5,

“)

The second line is some substitution of the first line with signs “plus™ or “minus™.

2_Element of Gw . applied to the model, satisfies this model.

3. Unordered quadruples of vectors are in pairs different

(my, 1)), (g, 1), (3, 225), (Mg, 72 ) & (.50 (1,5,), (75,530, (74, 5,)
Example: substitution
[(ml moom omy) myony) (my ”4))
Gy my) Oy omy) (o omy) (g omy)
satisfies model (1)—(3).



Description of group G .
Rotations on angles x.77. Group G, contains 4 rotations

a (m, n) = (-n, m) // rotation on %

& (m, n) 2 (-m, -n)

a (m, n) 2 (n, -m)
a*=¢:(m, n) 9 (m, n)

Svmmetries of the plane relatively axes OX u OY. Orders = 2.

8 (m, n) 2 (m, -n) // OX symmetry
Y. (m, n) 2 (-m, n) // OY symmetry
Svmmetries of the plane relativelvy x = y, x = -y. Orders =2.

§: (m, n) 2 (n, m) // x =y symmetry
gr  mpm) F (Cogoom) // x = -y symmetry



The set of ransformations of the plane forms group of 8-th order, well known as group of
diedre.

o ™, Fa e, -
’.- . > .
’ - o -
K 3 s = % M,
- ' d
“'- » ’ 4
" #

K:®

Fig 1. The group of symmetries of model (1)-(3). (Diedre group).
Example: substitution

[(ml np) Grg  ny) Gy ng) Gny n4)]

(ny —-np) (mg -ng) (mz -n3z) (g —ng)

- result of applying of transformation g x &,. £; = 8(X)).



Assertion 1.
Let signed substitution has the view
% T e W X ()
a(Ky) oK) olK;) o(Ky)
Where oceG_ and K, K ,K,K, satisfies model (1)-(3). Then quadruple
c(K),o(K),c(K),o(k,) also satisfies model (1)-(3).
Assertion 2.
Let signed substitution has view (4) and quadruple ¥ ,X K K, satisfies (1)-(3). Then
quadruple (,s), ¢.,5), (r,5), (r,,5) has view o(X ),o(X ),o(K ), o(X ), where
substitution (j ,j.,j.,f,) transforms parallelogram X K K K, toitself.
This group described by generators

K); 2 K;, Kz 2 Ky, (K1, K3) 2 (Ka, Ky).

So we consider group G _ as group of symmetries of our model (1)-(3)/



Definitions of asymmetric and symmeftric solutions

Definition 2. Solution X ,X K K, (of model (1)-(3)) is said to be asymmetric, if all
quadruples o(K),c(K),c(K),c(K,),c €G _ are in pairs different.

Definition 3. Solution X, K ,K.K, is said to be symmetric, if there exists such
celG ,o#l1,then

(KLELKL,K) = (@(K),o(K),o(K),0(K,)

These definitions are differs from definitions uses in previous publications.
Differences are discussed below.



2. Algorithm of generation of base asymmetric solutions

The algorithm consists from two subalgorithms, executing consequently. First algorithm
generates the Table TQ of (q)-classes (in terminologyv of [1]).

Definition 4.
Let X(#2,7) - point of the plane. Point ¥ belongs to (q)-class, if

m2+n2=y-4\[§, (6)

where & - natural number, free from 4-th degrees.

As it was shown in previous publications, equation (2) can be rewritten to the view

Al % T ¥ '4\{5 =y3° g + ¥, '%,/q_ (asymmetric case 2?7) (7)
or to the view
N 4\/471 +¥ e =0 ‘4\];}—1'*' ¥a 4\/;?: (symmetric case) (8)

Number p is called as the class of point X (2, 2) .

So (7), (8) means that the arbitrarv quadruple - solution of (1)-(3),
a) contains four points from one (q)-class,
b) contains two pairs of points from two different (q)-classes.



Algorithm of generation of base asymmetric solutions. Main idea:

1. The algorithm generates in pairs different base quadruples (¥ ,X ,K ,K) belongs to
one (q)-class from first octant of the plane: x 20,y 20,x 2 y such that

N—r=ri—y» rn-rzl ©)
In this way we satisfv condition (7) together with equation (2). Itis easv to see that these

conditions are invariants relatively transformations from Gs}m .

2. For each such quadruple (X}, X, &5, X, ) algorithm finds all such quadruples
(&),05(&,),0:(K3),04(Ky)), 65 € G
that
Ry —Os(ks )= 04 (Ry ) - 03 (Ky) (10)

In this way we satisfv vector equation (1).

Then quadruple
Ky, oy (By) 05 (K3 ). Oy (Ky ), O € Gy (11)

forms the base asvmmetric solution.



Note then the first point K; belongs to first octant. That's why the algorithm will
generate only one (base) solution 5 from each eight different solutions of the view

S, q(8), &, (5), 0,(5), ,(5), 0. (5), a,(5), a;(5) (12)

Thatis why we found only the base solutionand generating of quadruplesmade in the
view

(K, 0,(K,), 03(&;), 0, (X)), 0, €Gy,,



Preliminary computations
On the preliminary stage subalgorithm 1 executes following computations:

1. Form:
1.1.the table (array) P of all primes P={p:p<} fZDfm} i

1.2 the table (array) P4 of all 4-th degrees of primes from P.
Stage 1. Main Loop

2. Forall (mn), mEn<D_  _ compute

2.1 Ay =m* +n?

22 Vg =y {/Ef- _//bv dividing A _on all elements from P4.
2.3 . Insert (m, n, 7y) inthe Table TQ of (q)- classes



TQ — Table of (q)-classes
Table TP is array of pointers on lists of (p) classes.

Elements of the list (p) are ordered bv order of enumerating of points (m. n).

q |Quont

mny * —* mny —* mny > —* Ni

S v

Fig 2. Data structure for (q)-classes —table TP.

Smax = (Dga)?. Quont — number of elements in (q)-class.

Invariant: #° + #° = y“ G



Stage II (Subalgorithm 2)
1. Forming of the table TG of differences
For all (q)-classes — lines of Table TQ

For all pairs X;(m;,n;), Ki(m;,n;) from fixed line of TQ
fys-17.=7v, y>0
Then Insert(Tc, 7y, K;, Kj)

0
Quont| [(m;n;) (min;) (min) Nil
! | Jmins)| . lmsn) |, _lminn) [T T
D
Max

Fig 3. Data structure for (q. y)-classes —table TG.
Invariant for table TQ:

Mt =, A =Yg, h-¥=¥ ¥>0
Each pair of elements from (q)-line of table TG satisfies equation (2).

(15)



Stage II (Subalgorithm 2)
2. Searching of asymmeftric solutions for fixed pair (K., K;3), (K:, K3)

Let us consider quadruple (K:, Ks3), (K:, K;) belongs to one line of TG-table.
Algorithm enumerates all triples of elements of G, .-

Forall (0,.0;,04), O, € G_',ym
If k) -oc3(k;) = o4(ky) - oy (k) (16)
Then Write(OutFile, (K., ©2(K:), 03(K3) 0z(Ks))

Mark. that full account of all triples (T2.05.04). 0; € G, requires $*8*8 =512 steps.
But in the paper we propose an effective algorithm to check (16).



4.Analysis of asymmetric and symmetric solutions

Let K;, K, K3, K be a quadruple of points from the first octant generated by

algorithm as (XK., Ks), (Ks, Kjy)and so satisfies (2) . Then following cases are
logically possible:

1. Points K., Kz, K3, K in pairs different

2. Only two points are equal: say, Ky = K;.

Ja. If Ky, = Kg then K3 = Ky .1e. (K:, K3)=(Ks, K,). This case do not
generates by the algorithm. We shall consider itin 3.

2b. If Ky = K, pairs (K, Ks3), (K:, K.) are different. This case generates
by the algorithm.

3. Quadrupleis (K:, Ks3), (K:, Ks3). Relation (16) has view

A - o3 (A;)= 0y (A) - 0y (4) (17)
Next slide



Pairs (K:,Ks3) , (K:® ,K5(%)
forms solution.

Pairs (K;,K3) , (K. ¥ ,K3(M)
forms solution.

>
Fig 4. Case 3.
3a. If segment (K., Ks) isina general position then all solutions described by
K - o(K;) =’ (K, - a(K;)) (19)

where - rotation on 180° .and & - an arbitrary element of Gy



Cases 3b—3e
3b. If (K., K3) || 0O, then solutions are

((Re, K3), (B(K:), B(K3))), ((R:e, K3),(Y(Ki), 7 (K3))).
3c. If (Ky, K3) || oY, then solutions are
((Ke, K3), (Y(RK)), (v (K3)), (R:e, K3), (B(Ky), B(K3))).
3d. If (K., K3) || x = y, then solutions are
(Ke, K3),(0(Ky), O(K3)), (Ki, K3),(e(Ky), €(K;3)).
3e. (Ks, K3) || x = -y, then solutions are

(Ke, K3),(0(Ky), 0(K3)), (K:i, K3),(E(K:), £(K3)).



Case 4. "

Fig. 5. All 4 points generates from one point K, .
Points Ky, K, Ks3, Kg belongs to the orbit of K.
e K, K2 , K (% , K (3)
3 K, K@ , K@ K6

< K, K3 , g4 K



Series of symmrtric solutions
1. Case 3a.

(arb) r (cld) r (-av-b) r (-Cl-d) . (20)
The number of such solutions has the order &{D).

2. Case 3b.
(arb) r (Cyb) r (Cr-b) r (ar-b) . (21)
(alb) r (Crb) r (-alb) r (-C,b) . (22)

The number of such solutions has the order (D ).

Case 3¢
(a,b), (a,c), (-a,c), (-a,b). (23)
(arb) r (a,c) r (ar-b) r (a,-c) . (24)

The number of such solutions has the order &(D ).

Next slide



3. Case 3d:
(a,b), (ate,b+ec), (bt+c,atec), (b,a).

(2;b) ; (atc;bte):; (=b-c;-aze); (bi;=a)-

The number of such solutions has the order (D).

Case 3e
(a,b), (atec,btc), (btc,atc), (b,a).

(a;b) ;: (are,b-ec); (zb¥c;-a=c); (=b,;=a).

The number of such solutions has the order &(D ).
4. Case 4.
(a,b), (b,a), (-a,-b), (-b,-a)
(a,b), (b,a), (-a,-b), (-b,-a)
(a:b): =b;a): (-a;=b)y DBy —a)

(25)
(26)

(27)
(28)

(29)
(30)
(31)

The number of such solutions has the order &(D ). All these solutions included to (20).

Each series defines with precision to transformations from ¢, .



6. Series of symmetric solutions for different (p)-classes has the view (8)
Suppose that the equation (2) after computations has the view (8)

?’1"&/‘371"'?’2'?\/@’_2:?'1"‘\[@71*'72'?\[‘3'_2 (8)

Then there exists at least two pairs (%.%;), (%, .%,) such that
2 2 4 2, .2 4
My R =F g, My v =g, (32)

9ui: 9 $ 2 2 s
My Ry =¥, Gy, My +0 =¥, -G,



Ki—K3 = K~ Ko
IKe| = |Ks]
|K2| = [Kg]

I
H

[
by

K= P + L,
B =P TR,
Ry=:P = Lj
P.okods * R

s,
u

Fig. 6. Rectangle of solutions.



Let L =(a,b), d = ged(a, b).
Then P = C;(-b,a), R = C(-b,a).
K; = (a,b) + Ci/d*(-b,a),
K3 = (-a,-b) + Ci/d*(-b,a),
Ks = (a,b) + Ci/d*(-b,a) + C/d*(-b,a),
K = (-a,-b) + Ci/d*(-b,a) + C;/d*(-b,a).

. . K - K;
All coordinates K; — integers, and £ = -

That’s why numbers (a,b) may be semiinteders.

Coefficients C; C; may be rational with denominator d = ged(a,b) .



K: = (a,b) + Ci:(-b,a),
K;s= (-a,-b) + Ci:(-b,a),
K¢ =K; + Cz2(-b,a),

Ko = Kz + C>(-b,a).

1. d = ged(a,b)= 1.

l.a a,b are semiintegers = C1

1.b a,b € 2 = Cs , Co e 2
2: d = gaed(a,b)> 1.

PPPPPPDPDPDPDPPPDPDPPPYP DYDY YD

21+1, C2

2k.



Conclusion

1.Bce cummeTpuyHbie pewieHnsa — cepumn (21)-(31) —
YacTHble cnydau cepuu (39). Bce aTn cepum reHepupytoT
NPSAMOYTrOSIbHUKN.

2. Cepua (20) — camag bonbllaa — reHepupyer
napannenorpammbl. OHa He Bbipa)kaeTcs 4Yepes (39).
Taknm obpasom, CyLeCcTBYOT CUMMETPUYHbIE PEeLLEHUS,
OTHOcALWMeECH K cny4yato (7) HO He OTHOCALLMECS K
crniyyato (8)

3.CBONCTBO CUMMETPUYHOCTU peLLIEHNS MOXET ObITb
BblpaXXeHO B TEpPMUHAX paBeHCTBA HOPM BONHOBbIX

BekTopoB. CyLLeCcTBYIOT aCUMMETPUYHbIE PELLEHUS, B
KOTOPbIX HOPMbI NMapbl BEKTOPOB paBHbl (Crny4an 2b).



