
Оценка поглощенной дозы методом Монте-Карло в стенке полого органа на примере желудка от гамма-излучения

Постановка задачи: прогноз поглощенных доз

Формула для расчета поглощенной дозы в полых органах

$$D_{h.o.} = \frac{kA \sum_{i} n_i E_i \phi_i^{ts}}{M},$$

где і - индекс, обозначающий излучение α , β^{\pm} ;

 n_i - выход данного і-го вида излучения на один акт распада;

A - накопленная активность органа-источника (мкKи·ч или MEк·с);

 E_{i} - энергия, выделяемая при одном акте распада (МэВ);

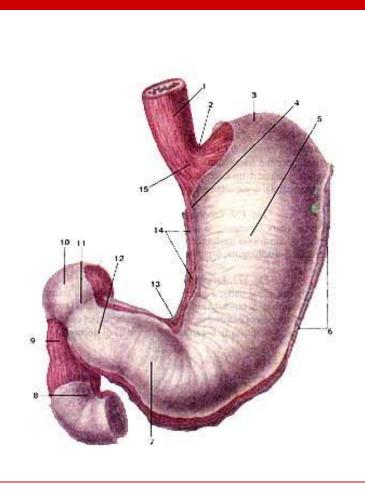
 ϕ_i^{ts} - доля энергии, поглощенной органом-мишенью (t) от органа-источника (s);

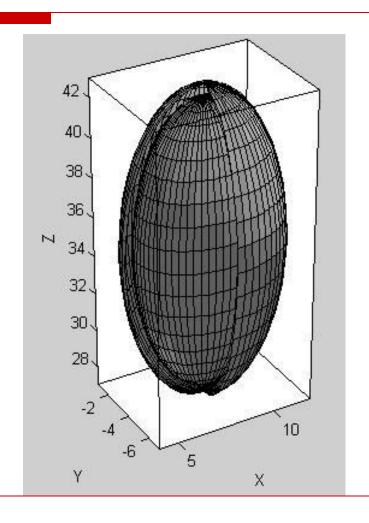
М - масса органа-мишени (г или кг);

k - коэффициент перевода в определенную систему единиц.

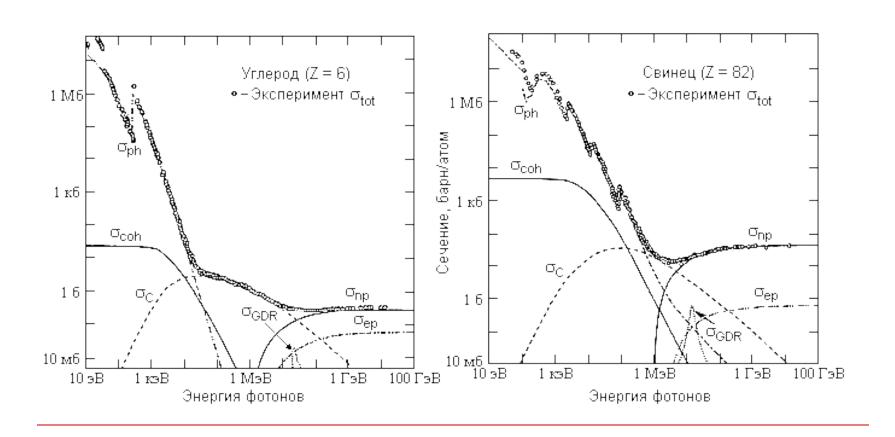
Модель желудка

$$(\frac{x-x_0}{a})^2 + (\frac{y-y_0}{b})^2 + (\frac{z-z_0}{c})^2 \le 1$$


- стенки


$$(\frac{x-x_0}{a-d})^2 + (\frac{y-y_0}{b-d})^2 + (\frac{z-z_0}{c-d})^2 \ge 1$$

$$(\frac{x-x_0}{a-d})^2 + (\frac{y-y_0}{b-d})^2 + (\frac{z-z_0}{c-d})^2 \le 1$$

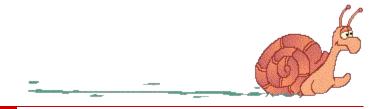

-содержимое

Вид реального органа и его математическая модель

Рассматриваемые физические процессы

Задачи

- Описать математическую модель желудка в среде Geant4
- Смоделировать физические процессы, сопровождающие прохождение гамма-квантов через стенки желудка
- Рассчитать поглощенную дозу
- Сравнить со стандартными значениями


Поглощенная доза «желудок-источник на желудок-мишень» в расчете на 1 акт распада

E_{γ} , МэВ	152 г	158 г	Стандартная
0,01	3.3E-01	3.2E-01	3.0E-01
0,015	7.1E-01	6.8E-01	6.9E-01
0,02	8.6E-01	8.3E-01	8.4E-01
0,03	6.7E-01	6.4E-01	6.5E-01
0,05	3.3E-01	3.2E-01	3.2E-01
0,1	2.0E-01	1.9E-01	1.9E-01
0,2	1.8E-01	1.7E-01	1.8E-01
0,5	1.9E-01	1.8E-01	1.8E-01
1,0	1.6E-01	1.5E-01	1.6E-01
1,5	1.4E-01	1.5E-01	1.5E-01
2,0	1.5E-01	1.4E-01	1.4E-01
4,0	1.2E-01	1.1E-01	1.1E-01

Результаты:

- Создана математическая модель, описывающая человеческий фантом и расположенный в определенном органе изотропный источник гамма-излучения.
- □ Полученные значения поглощенной дозы отклоняются от стандартных значений не более, чем на 7%, что позволяет использовать созданную модель для дальнейших расчетов.

Цели на будущее

- Рассчитать поглощенные дозы при другом расположении источника
- Рассчитать эквивалентные дозы
- Задать альфа-источник и его параметры
- □ Перейти к анализу альфа излучения от препарата At-211