УНРЦ МПГУ, Москва, февраль 2010

Молекулярно-лучевая эпитаксия и люминесценция GaN/AIN квантовых точек

К.С. Журавлев Институт Физики Полупроводников СО РАН, Новосибирск, Россия

План выступления

- Информация о лаборатории МЛЭ материалов типа А₃В₅
- МЛЭ GaN квантовых точек в матрице AlN
- Фотолюминесценция GaN/AlN KT
- Заключение

Лаборатория МЛЭ материалов типа А₃В₅

Riber-32P

Compact 21T

Riber-32P CBE

Defect density

Defect density

Методы эпитаксии III-нитридных гетероструктур

Молекулярно-лучевая эпитаксия

Газофазная эпитаксия

<u>Аммиачная МЛЭ</u>

 $\begin{array}{l} \blacksquare Ga(Al) + NH_3 \rightarrow GaN(AlN) \\ + N_2 \uparrow + H_2 \uparrow \end{array}$

□ <u>рч-МЛЭ</u>

 $Ga(Al) + N (plasma) \rightarrow GaN(AlN)$

 $Ga(CH_3)_3 + NH_3 \rightarrow$ $GaN + CH_4 + N_2 + H_2$

 $Al(CH_3)_3 + NH_3 \rightarrow$ $AlN + CH_4 + N_2 + H_2$

4

Молекулярно-лучевая эпитаксия

Достоинства МЛЭ технологии:

низкая скорость роста слоев (1 мкм/час = 1 нм/сек),
 быстрая скорость управления потоками исходного вещества,
 lin situ контроль ростового процесса.

Проблемы МЛЭ GaNAlGaN гетроструктур

✔ Отсутствие GaN подложки

- Технология начала роста: полярность и морфология.
- Управление упругими напряжениями в гетроструктуре.
- Уменьшение концентрации дефектов и примесей.
- Получение требуемой морфологии поверхности и границ раздела.

Встроенное электрическое поле в вюрцитных GaN/AlN KT

Optical properties of wurtzite GaN/AIN QDs are significantly affected by the presence of a strong built-in electric field

- Origin of electric field: spontaneous polarization at the GaN/AIN interfaces and piezoelectric polarization of strained GaN
- Resulting electric field value: a few MV/cm
- Direction of electric field: vertical along the (0001) growth axis

Эффекты встроенного электрического поля в GaN/AlN KT

Presence of a strong built-in electric field in GaN/AIN QDs results in:

- Quantum-confined Stark effect
- Exponential dependence of PL decay times on the QDs size
- Strong dependence of the PL peak energy on the excitation power as a consequence of the screening of electric field?

Энергетическая диаграмма GaN/AlN KT

A.D. Andreev and E.P. O'Reilly, Appl. Phys. Lett., 79, 521 (2001)

Дифракция быстрых электронов на отражение

ДБЭО: 2D и 3D дифракционные картины

11

ДБЭО исследования

Анализ роста КТ с помощью ДБЭО

Reflexes intensity evolution

Spot's shape (Gauss function):

$$I(x) = \sum I_0 \cdot e^{-\sigma \cdot^2 (x - x_0)^2}$$

 $\Box I_0(t) - GaN islands density$

σ(t) – effective average dimension of GaN islands

 $\mathbf{x}_{0}(t)$ – reflex position, strain

Механизмы эпитаксиального роста

- Frank–van der Merwe (FV) E_{layer} + E_{in} + E_{el} < E_{sub}
- Volmer-Weber (VW) E_{layer} + E_{in} + E_{el} > E_{sub}
- Stranski- Krastanov (SK) $E_{layer} + E_{in} + E_{el} < E_{sub} \quad d < d_{c}$ $E_{layer} + E_{in} + E_{el} > E_{sub} \quad d > d_{c}$

E_{layer}, **E**_{in}, **E**_{sub} - surface energies

E_{el} – elastic energy

КТ, выращенные по методу Странского-Крастанова

GaN islands (self-organized quantum dots)

GaN wetting layer (critical thickness) d ≈ 2.5 ML)

AlN bufer layer

ДБЭО контроль моды роста

MBE growth of QDs without 2D \rightarrow 3D transition

10

Кинетика роста GaN островков на поверхности AlN

Условия роста структур с квантовыми точками GaN в AlN

№ образца	Температура роста GaN, °С	Номинальное количество осажденного GaN, монослоев	Эквивален тное давление потока NH ₃ , Торр	Эквивален тное давление потока Ga, Торр	Количеств о слоев КТ
149	900	7.5	6.5·10 ⁻⁶	1.3 ·10 ⁻⁶	10
280	500	5	2·10 ⁻⁶	9·10 ⁻⁷	15
391	610	5	10-4	5.4 ·10 ⁻⁷	1
415	540	4	10-4	5.4 ·10 ⁻⁷	1
416	540	2	10-4	5.4 ·10 ⁻⁷	1

Электронная микроскопия КТ

Typical QDs density was in a range of 10^{10 -} 10¹¹ cm⁻².
 Height of QDs was in a range of 2.0-5.0 nm.

Спектры фотолюминесценции КТ

Зависимость энергии максимума ФЛ от средней высоты КТ

Безызлучательная рекомбинация в GaN/AlN KT

Зависимость энергии активации тушения ФЛ от средней высоты КТ

Возможные механизмы температурного тушения ФЛ КТ

- Оже-рекомбинация
- Рекомбинация через глубокие центры
 - внутри квантовых точек
 - в матрице

Термически активируемый захват на уровни дефектов, локализованных в окрестности КТ

Спектр дислокаций в AIN

C. J. Fall, Phys. Rev. B, 65, 245304 24

Микрофотолюминесценция GaN/AlN KT

Fourth harmonic of a *cw* Nd:Vanadate laser, $\lambda = 266$ nm ($\Box \omega = 4.66$ eV). The laser spot was about 1.5 μ m in diameter .

Микро-ФЛ GaN/AlN КТ при различной мощности возбуждения

Зависимость интесивности ФЛО от мощности возбуждения

Зависимость энергии максимума полос ФЛ от мощности возбуждения

Причины независимости положения полос ФЛ от мощности возбуждения

✓ Small number of carriers in single QD: ≤ 1 e-h pair.

The internal electric field in the explored structures is small in comparison with the value deduced from the piezoelectric constants and the spontaneous polarization.
 Small shift of particular PL bands can be due to recharging of defects located at distance of a few nm from QD.

Изменение параметров решетки GaN КТ по данным ДБЭО

Фотолюминесценция КТ GaN/AlN при высокой мощности накачки

Спектры ФЛ

Зависимость интенсивности ФЛ от мощности лазера

31

Зависимости положения и ширины полос ФЛ уровня накачки

Энергия максимума полосы ФЛ

Ширина полосы ФЛ

Перенормировка запрещенной зоны

$$\Delta E = -K \cdot n^{\overline{3}}$$
$$n = \frac{\alpha dJ}{\boxtimes \omega n_{QD} V_{QD}}$$

α-коэффициент поглощения,
 d - толщина смачивающего слоя,
 J – плотность энергии в импульсе,
 V - объем всех КТ.
 n = 4 • 10²⁰ см⁻³

 $K_{QD} = 4.1 \cdot 10^{-8} \text{ eV cm}$ $K_{Bulk} = 4.27 \cdot 10^{-8} \text{ eV cm}$ M. Yoshikawa, J. A33. Phys. 86, 4400 (1999)

Нестационарная ФЛ КТ GaN/AlN

Спектры нестационарной ФЛ

Кинетика ФЛ

Время жизни в КТ

Заполнение энергетических состояний

Квантовые ямы

Тонкая структура экситонов в КТ

Momentum conservation law

Energy scheme of exciton

The total angular momentum of heavy-hole excitons in QDs M=s+j, $s=\pm \frac{1}{2}$ (the electron spin), $j=\pm 3/2$ (the heavy-hole àngular momentum). Four degenerate states: $M=\pm 1$ (bright states), $M=\pm 2$ (dark states). Emission of pure states is circular polarized.

Electron- hole exchange interaction: causes a dark-bright splitting,

- mixes the dark states,
- -- lifts their degeneracy.

2. Lower symmetry of QDs:

-produces a nondegenerate bright doublet, -- mixes the bright states.

The mixed states usually produce lines showing linear polarization.

R. Seguin et al. PRL, 95, 257402 (2005).

36

Линейно поляризованное излучение КТ Micro-PL spectra of QDs Electron-hole exchange energy in ODs

Neutral exciton spectrum of single-QDs exhibits a doublet of lines that are linearly polarized along two perpendicular directions.
Light-hole-to-heavy-hole valence band mixing modulates the oscillator strengths of the different components, in case of anisotropic confinement.

Линейно поляризованная ФЛ GaN/AlN КТ

Micro-PL of QDs with different density and size

$P = \frac{I_{\text{max}} - I_{\text{min}}}{1 - 1} = 15\%$ Sample#3 1.2 - $I_{\rm max} + I_{\rm min}$ (1)(3)(2)4500 $1.0 \cdot$ 4000 PL Intensity (arb. units) PL Intensity (arb. units) 3500 0.8 3000 0.6 2500 φ=0΄ 2000 0.4 1500 **⊅=90°** 1000 0.2 500 0.0425 375 275 300 325 350 375 400 450 475 275 300 325 350 400 425 450 475 Wavelength (nm) Wavelength (nm)

Polarization degree depends on density of QDs, it varies from 2% to 15%.

Polarized micro-PL of QDs

квантовых точек

Micro-PL of QDs with different density

- GaN QDs are tend to be formed at elastic potential minima on AlN surface close to defects such as threading edge dislocations.

- This leads to anisotropy of strain and shape of a QD and linear polarization of PL emission of single QD.

- If the density of QDs is higher than density of dislocations one part of QDs will be formed close to dislocations and exhibit linearly polarized emission while other QDs will be dislocation free and exhibit unpolarized emission.

The higher degree of PL polarization of sample with lower QD_s density can be attributed to the larger part of QDs, which are located at vicinity of dislocations

В ИФП СО РАН развита МЛЭ технология GaN квантовых точек в матрице.

 Ведутся исследования механизмов роста, структурных и люминесцентных свойств структур с квантовыми точками

- В.Г.Мансуров, Ю.Г.Галицын, Т.В.Малин, А.Тихонов (Рост),
- А.К.Гутаковский (Микроскопия),
- И.Александров, А.М.Гилинский, (Фотолюминесценция).
- ИФП СО РАН, Новосибирск
- Ph. Vennegues (Microscopy) Centre de Recherche sur l'Hetero-Epitaxie et ses Applications, Valbonne, France
- P. P. Paskov, P.O.Holtz (micro-Photoluminescence) Linköping University, Linköping, Sweden

Спасибо за внимание !