Модернизированная система внутриреакторного контроля (СВРК-М) на 5 и 6 блоках АЭС «Козлодуй» как новый этап в развитии контроля условий эксплуатации ядерного топлива в реакторах типа ВВЭР

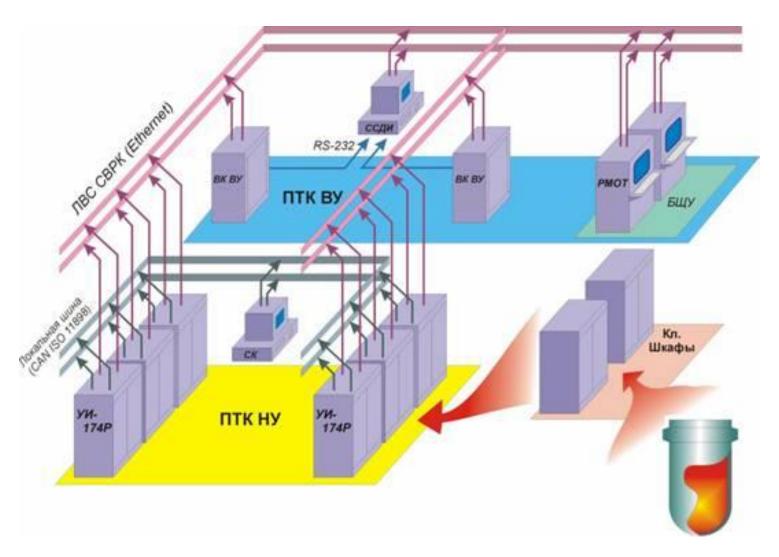
В.И. Митин, <u>А.Е. Калинушкин</u>, К.Б. Косоуров, Ю.М. Семченков РНЦ «Курчатовский институт» Т.П. Батачка АЭС «Козлодуй»

Ядерный форум «Болгарская ядерная энергия – национальная, региональная и мировая энергетическая безопасность» (BULATOM), 27-29 мая, г.Варна, Болгария

Этапы развития внутриреакторного контроля на ВВЭР

- 1. Контроль с помощью внереакторных камер и термопар, расположенных на выходе из части ТВС
- 2. Развитие за счет периодических активационных измерений
- 3. Создание системы на базе постоянно размещенных в активной зоне родиевых ДПЗ и термопар на выходе из части ТВС

СВРК является основным средством наблюдения за эксплуатацией топлива в активной зоне в режимах нормальной эксплуатации и нарушения нормальной эксплуатации реакторов ВВЭР.


ЭТЫ

Проек

СВРК

3

Структура СВРК-М

СВРК-М – новое поколение систем внутриреакторного контроля на ВВЭР-1000.

Основу СВРК –М проекта РУ В-320 составляют:

- внутриреакторные датчики нейтронного потока (родиевые ДПЗ в количестве 7×64=448 штук) и температуры (95 термоэлектрических хромельалюмелевых преобразователей типа К);
- измерительная аппаратура высокого класса точности (погрешность 0,05% для всех измерительных каналов)
- высокопроизводительная вычислительная техника в исполнении для ответственных применений;
- специализированное программное обеспечение.
 Всё оборудование и специализированное программное обеспечение СВРК-М разработано и изготовлено в России.

В процессе создания СВРК-М были разработаны и внедрены следующие основные технические решения

Для повышения точности и быстродействия:

- введение в измерительный канал каждого внутриреакторного нейтронного датчика индивидуального АЦП с числом разрядов не менее 16, циклом обработки не более 160 мс, с уровнем шума не входе не более 10⁻¹⁰ А;
- применение измерительной аппаратуры класса точности 0,05 %;
- применение кубического сплайна при аппроксимации функциональных зависимостей от высоты, выгорания активной зоны при обработке сигналов нейтронных детекторов;
- использование индивидуальных калибровочных коэффициентов и технологии термостабилизации характеристик термопар;
- исключение запаздывания сигналов родиевых нейтронных детекторов для уменьшения динамической погрешности при контроле быстропротекающих технологических процессов.

В процессе создания СВРК-М были разработаны и внедрены следующие основные технические решения

Для повышения надежности:

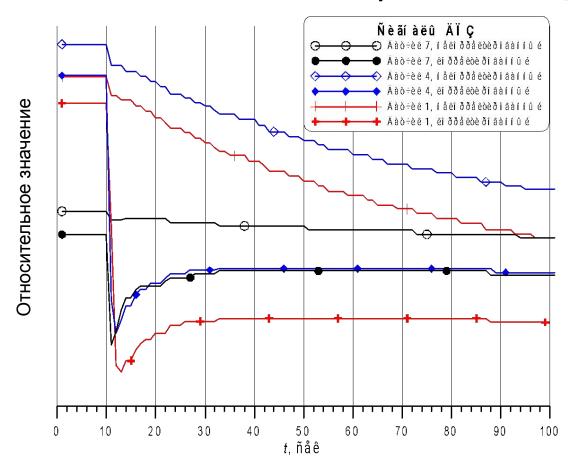
- разработка измерительной аппаратуры в соответствии с российскими и международными требованиями, предъявляемыми к оборудованию систем защиты;
- резервирование измерительных каналов, обеспечивающих дублирование выполнения основных функций;
- разработка программного обеспечения в соответствии с современными международными требованиями;
- отличие расчетных моделей СВРК-М от проектных расчетных моделей;
- применение надежных операционных систем типа Unix;
- использование элементов, узлов и вычислительных средств, разработанных для ответственного применения;
- введение широко развитой процедуры самодиагностики.

СООТВЕТСТВИЕ СВРК-М международным стандартам

СВРК-М соответствует стандарту МЭК 61513

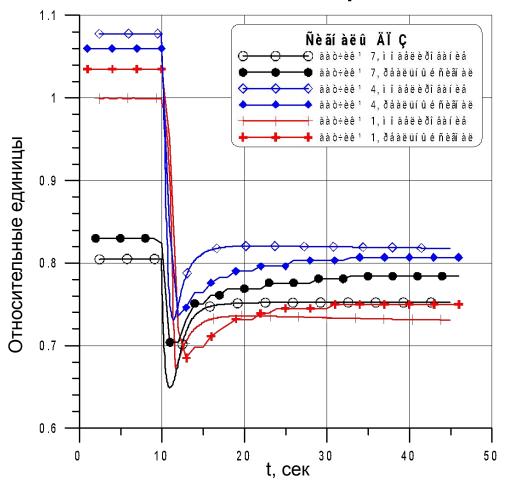
Оборудование СВРК-М прошло квалификацию по стандарту МЭК 60780 Программное обеспечение СВРК-М разработано с учетом требований

Разработка проекта, оборудования и программного обеспечения проводилась в соответствии с требованиями ISO 9001


стандарта МЭК 60880

Проект СВРК-М лицензирован Ростехнадзором России

Оборудование и программное обеспечение СВРК-М сертифицировано независимой уполномоченной фирмой «Атомсертифика» (Россия)


- а) устранение запаздывания родиевого ДПЗ для оперативного контроля энерговыделения в активной зоне
- в) оперативный и независимый контроль тепловой мощности реактора по показаниям родиевых ДПЗ
- с) контроль и автоматическая защита по внутриреакторным (пиковым) факторам для ТВЭЛ и ТВЭГ
- d) независимый контроль мощности ТВС по показаниям родиевых ДПЗ и по данным внутриреакторного термоконтроля
- е) отличие расчетной части программного обеспечения СВРК-М от используемого проектного кода

Основные отличительные особенности СВРК-М Устранение запаздывания родиевого ДПЗ

Изменение токов родиевых ДПЗ (без устранения запаздывания (некорректированный) и с устранением запаздывания (корректированный)) в технологическом процессе с падением одного ОР СУЗ

Основные отличительные особенности СВРК-М Устранение запаздывания родиевого ДПЗ

Изменение нейтронного потока в местах расположения родиевых ДПЗ в технологическом процессе с падением одного ОР СУЗ по показаниям ДПЗ и по результатам моделирования (с помощью расчетного кода NOSTRA)

В СВРК-М осуществляется контроль и автоматическая защита по:

- запасу до кризиса теплообмена;
- линейному энерговыделению.
 Контроль и защита по линейному энерговыделению осуществляется одновременно и для всех ТВЭЛ (включая периферийные) и для ТВЭГ с учетом выгорания топлива.

СВРК-М обеспечивает независимый контроль мощности ТВС по показаниям родиевых ДПЗ и по данным внутриреакторного термоконтроля на энергоблоках с ВВЭР-1000, где устранен «ПЭЛ-эффект».

На 3 блоке Калининской АЭС для ТВСА с модернизированной головкой СКО=3,66%

СКО – среднеквадратичное отклонение мощностей ТВС, определенных по данным внутриреакторного термоконтроля от мощностей ТВС, определенных по показаниям родиевых ДПЗ (выборка из 85 ТВС в четвертой топливной кампании)

В соответствии с международными рекомендациями для исключения ошибки по общей причине расчетная часть программного обеспечения СВРК-М отличается от проектного кода, используемого для расчета топливных загрузок.

Для повышения информированности персонала в процессе эксплуатации энергоблока дополнительно в состав СВРК-М входит on-line программный код ИР, построенный на базе проектного кода с использованием реальных сигналов родиевых ДПЗ.

Этапы внедрения СВРК-М на АЭС «Козлодуй»

- разработка технического задания;
- разработка технического проекта;
- конструирование и изготовление оборудования;
- разработка, верификация и валидация программного обеспечения;
- монтаж и наладка оборудования на энергоблоках;
- проведение функциональных испытаний системы.

Работа осуществлялась РНЦ КИ при участии СНИИП-АСКУР, Эйс-груп, ОКБ «Гидропресс», АЭП.

Все этапы внедрения СВРК-М проходили под контролем и при участии специалистов АЭС «Козлодуй».

Контроль температуры теплоносителя 1 контура

Термоконтроль	11 кампания	12 кампания	13 кампания	14 кампания	15 кампани
Тср в петлях по ТП, °С. / Погрешность (2СКО), °С	276.1/±0.20	276.2/±0.17	274.8/±0.08	277.5/±0.20	276.6/±0.36
Тср в петлях по TC, °C. / Погрешность (2СКО), °C	276.3/±0.24	276.5/±0.18	275.1/±0.38	277.7/±0.60	277.1/±0.32
Тср в акт.зоне по ТП, °С/ Погрешность (2СКО), °С	276.2/±0.30	276.7/±0.80	275.3/±0.65	278.1/±1.00	277.2/±1.00
Тср по ТПкнит, °С/ Погрешность (2СКО), °С	-	-	-	277.3/-	276.4/±0.80

5 блок

Термоконтроль	10 кампания	11 кампания	12 кампания	13 кампания	14 кампания
Тср в петлях по ТП, °С. / Погрешность (2СКО), °С	277.0/±0.26	276.8/±0.32	276.0/±0.29	76.0/±0.29 274.6/±0.26	
Тср в петлях по TC, °C. / Погрешность (2СКО), °C	277.1/±0.14	277.0/±0.33	276.2/±0.22	275.1/±0.50	279.4/±0.06
Тср в акт.зоне по ТП, °С/ Погрешность (2СКО), °С	276.9/±0.44	277.5/±0.44	276.6/±0.43	275.4/±0.42	280.2/±0.40
Тср по ТПкнит, °С/ Погрешность (2СКО), °С	-/-	-/-	-/-	-/-	279.2/±0.88

6 блок

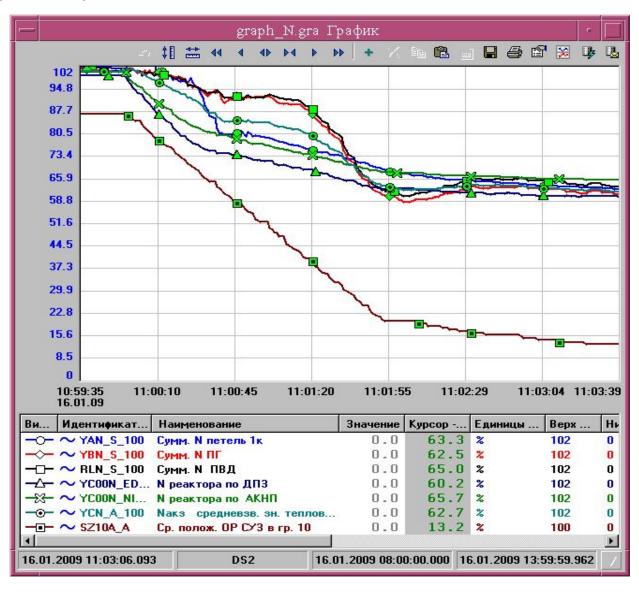
<u>Критерий достоверности</u> – погрешность измерения температуры теплоносителя при доверительной вероятности 0,95% не должна превышать:

- для каналов термоконтроля в петлях с термометрами сопротивления 0,5 °C;
- для каналов термоконтроля с термопарами 1 °C.

Контроль энерговыделения в активной зоне

Подсистема ЭВ	11 кампания	12 кампания	13 кампания	14 кампания	15 кампания	
Год эксплуатации КНИ/ к-во отбракованных ДПЗ	3/3	4/15	1/2	2/4	3/16	
Тепловая мощность, %	80	58	98	100	100	
СКО, определенное по методу симметрии, %	1.48	2.48	2.44	2.10	1.90	5 блок
Погрешность контроля ЭВ, %	2.96	4.96	4.88	4.2	3.8	
Подсистема ЭВ	10 кампания	11 кампания	12 кампания	13 кампания	14 кампания	
Год эксплуатации КНИ/ к-во отбракованных ДПЗ	2/11	3/27	4/32	1/0	2/0	
Тепловая мощность, %	80	58	98	100	100	6 блок
СКО, определенное по методу симметрии, %	1.93	2.62	1.39	1.49	1.64	
Погрешность контроля ЭВ, %	3.86	5.2	2.78	2.98	3.28	

<u>Критерий достоверности</u> – погрешность контроля энерговыления при доверительной вероятности 0,95% не должна превышать 5% для уровней мощности 70-100% от номинальной.

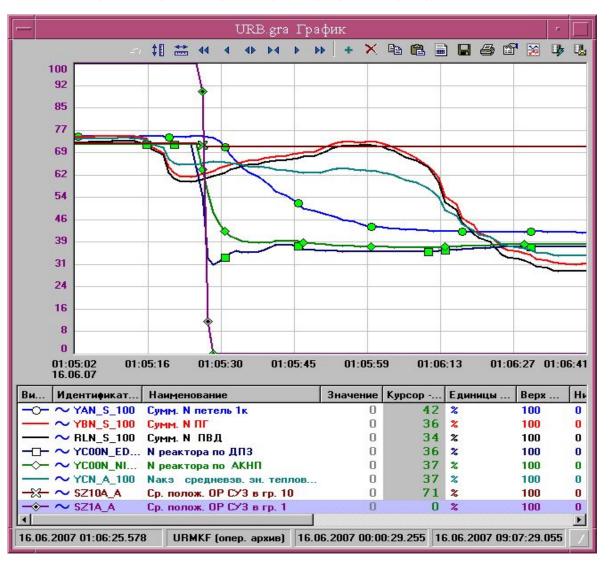

Характеристики СВРК-М на АЭС «Козлодуй» Контроль тепловой мощности

Уровень мощности	Временной интервал	N1k, MBτ / δN1k, %	N2k, MBτ / δN2k, %	Nпвд, МВт / δNпвд, %	Nдпз, МВт / δNдпз, %	Nик, MBτ / δΝик, %	Nакз, МВт	δΝακ3, %		
30%	18.07.2008 15:50-16:10	938 / 1.2	928 / 3.3	921 / 4.6	898 / 2.6	1057 / 13.9			5 блок	
	стат. веса	0.25	0.33	0.32	0.1		925.5	3.0		
	18.07.2008	1537 / 1.1	1496 / 2.1	1490 / 2.9	1474 / 2.7	1502 / 0.4				
50%	22:50-23:10									
	стат. веса	0.1	0.32	0.32	0.26		1492	3.0		
	19.07.2008	2174 / 1.2	2090 / 1.6	2091 / 2.2	2095 / 2.5	2178 / 2.8				
70%	05:50-06:10									
	стат. веса	0.07	0.31	0.31	0.31		2098	3.3		
	21.07.2008	3092 / 1.2	2961 / 1.1	2946 / 1.6	3002 / 2.6	3014 / 0.5				
1000/	06:50-07:10									
100%	стат веса	0.09	0.31	0.29	0.31		2981	3.7		
			0.44	0.37	0.19		2963	1.8		
Уровень	Временной	N1k, MBT	N2k, MBT	Nпвд, МВт	Nдпз, МВт	Nик, МВт	Nакз,	δΝакз,		
мощности	интервал	δN1k, %	δN2k, %	δΝπвд, %	δΝдпз, %	δΝик, %	МВт	%		
	04.10.2008	1173 / 2.3	1199 / 2.8	1192 / 3.9	1181/3.6	1143 / 3.7				
40%	23:50-00:10									
	стат. веса	0.18	0.19	0.32	0.32		1186	1.5		
55%	05.10.2008	1620 / 2.3	1645 / 2.1	1635 / 2.9	1627 / 3.6	1534 / 6.0				
	02:54-03:14								6 блок	
	стат. веса	0.22	0.14	0.32	0.33		1631	1.1	OOTOR	
70%	05.10.2008	2128 / 2.3	2152 / 1.7	2141 / 2.3	2153 / 3.6	2075 / 3.1				
	10:24-10:44									
	стат. веса	0.11	0.30	0.30	0.29		2147	0.9		
100%	07.10.2008	3000 / 2.3	3010 / 1.1	3002 / 1.6	3040 / 3.6	3027 / 0.7				
	04:00-04:20									
	стат. веса	0.30	0.31	0.31	0.08		3007	1.0		

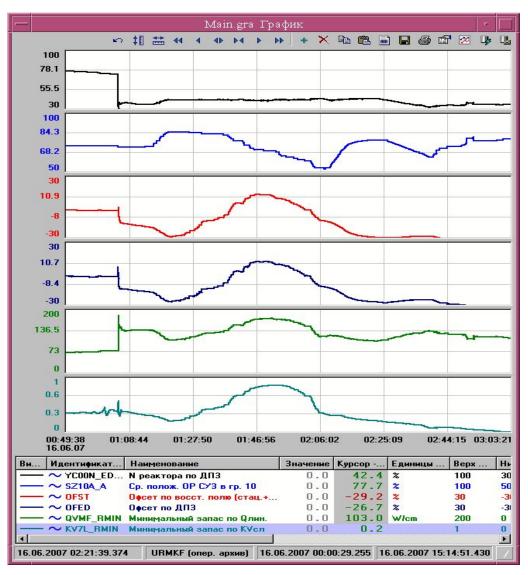
<u>Критерий достоверности</u> – погрешность определения средневзвешенной мощности при доверительной вероятности 0,95% не должна превышать 2% для уровней мощности 70-100 % от номинальной.

Переходные режимы

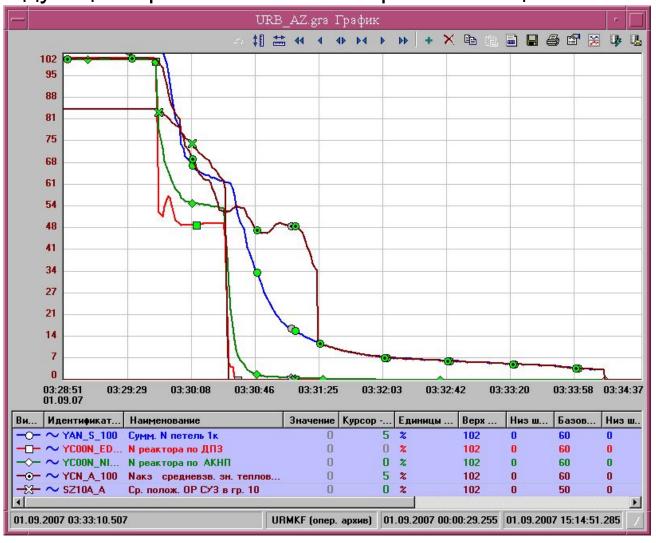
Разгрузка реактора с номинальной мощности после отключения ГЦН


Переходные режимы

Разгрузка реактора с номинальной мощности после отключения ГЦН


Переходные режимы

Ускоренная разгрузка реактора с уровня мощности 78% от номинальной после отключения ТПН


Переходные режимы

Ускоренная разгрузка реактора с уровня мощности 78% от номинальной после отключения ТПН

<u>Переходные режимы</u>

Ускоренная разгрузка реактора с номинальной мощности с закрытием стопорных клапанов турбогенератора и с последующим срабатыванием аварийной защиты от ключа

Развитие СВРК-М

Планируется внедрение следующих новых функций СВРК-М:

- внутриреакторная шумовая диагностика (реализована на АЭС «Тяньвань») с целью контроля появления локального кипения в активной зоне;
- контроль эксплуатационных ограничений по нагрузке топлива в процессе выгорания активной зоны для повышения эксплуатационной гибкости топливных циклов;
- информационная поддержка по оптимальному ведению водно-химического режима первого контура для повышения надежности эксплуатации топлива.

Спасибо за внимание