Введение в компьютерные методы метрико-топологических построений.

Г.Г.Рябов (МГУ) 2007г

Современная вычислительная среда.

- Глобальная модель циркуляции «атмосфераокеан» (MITcgm) -10^7 10^9 узлов (кубов).
- Обтекание «Аэробуса»-10⁷ тетраэдров.
- Биотомограф-1000х1000х1000(10⁹) вокселов.
- Фармацевтика- триангуляция молекулярной поверхности-10⁷.
- Перколяционные задачи- решетка 10⁹.
- Архитектура и строительство -минимальные поверхности.
- Научно-техническая визуализация -10⁷-10⁸ треугольников.

Геометрико - топологические особенности.

- Меры по сохранению устойчивости решения (число и геометрия тетраэдров).
- Проведение оперативных преобразований среды. (кластеризация и разбиение для распараллеливания вычислений).
- Сохранение при преобразованиях топологических инвариантов и заданных геометрических отношений(тел).

Digital geometry and topology Discrete differential geometry

- США (MIT, Caltech, Stanford)
- Франция(INRIA)
- Германия (Un.Gumbold)
- Швеция (Un.Upsala)
- Венгрия (Un.Seged)
- Нов.Зеландия (Un.Oakland)
- Япония (Un.Chiba)

комбинаторная топология

симплициальные комплексы

отображения Rn на подпространства

полиэдризация Rn

геометрия чисел

решетки

отображения Zn на себя

решеточный веер алгебра

линейные преобразования

унимодулярные матрицы

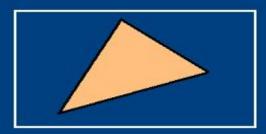
процессор метрико-топологических построений

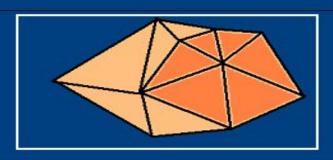
организация памяти с учетом симметрий и подобий организация вычислений с учетом параллелизма и контроля за инвариантами

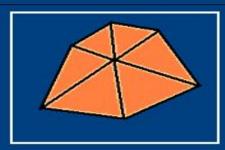
КОМПЬЮТЕР

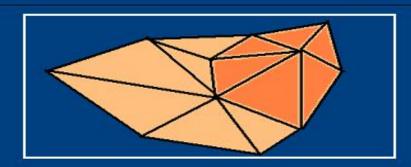
Комбинаторная топология.

- Конечный элемент-симплекс.
- Комплекс множество правильно расположенных симплексов.
- Звездный полиэдрокрестность.
- Преобразование комплексов -сумма допустимых преобразований звездных полиэдров.



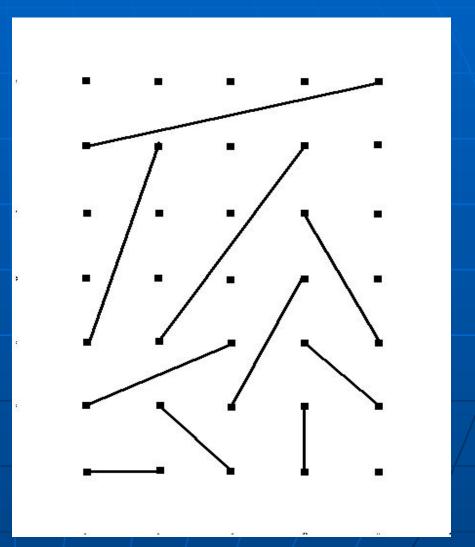






Целые точки и простые ребра.

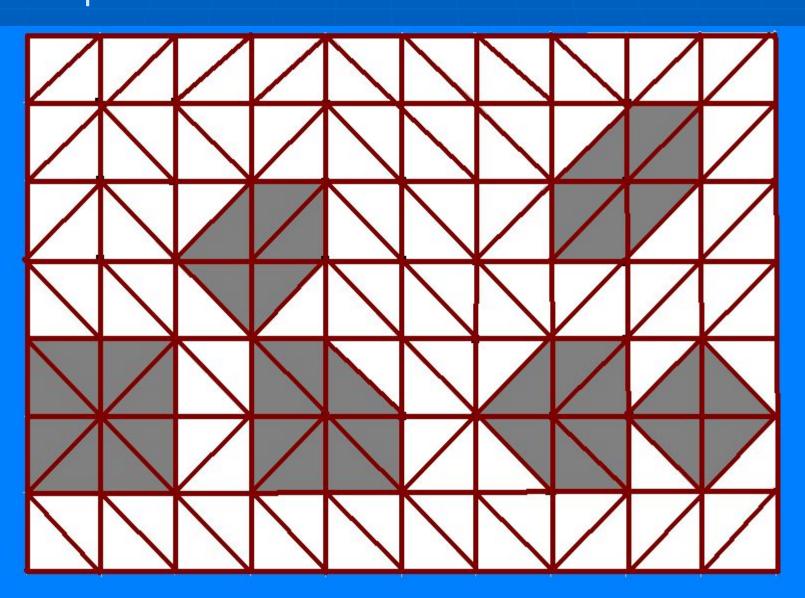
- Симплексы с вершинами в целых точках и простыми ребрами (не имеющими внутренних целых точек).
- Модельные множества (Zⁿ, Up), n-размерность пространства, p-норма простых ребер(p=max lx_il;i=1-n).
- Основные построения для n=3,4,5,6; p=1;



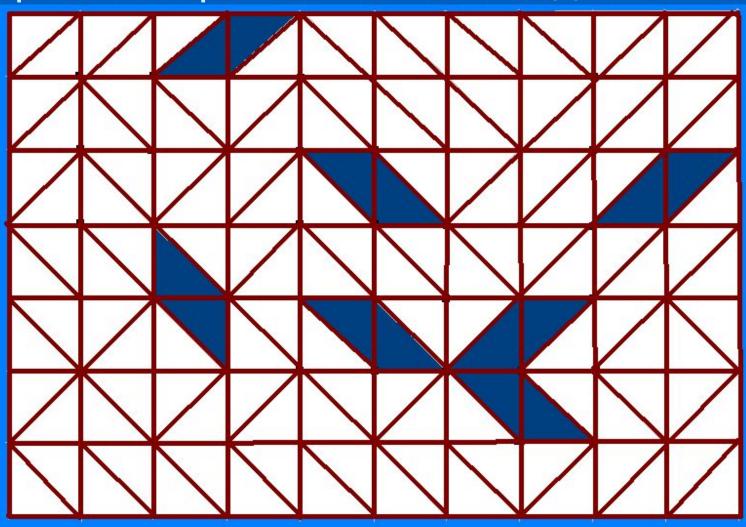
Основная последовательность базисных построений.

- Построение однородных звездчатых полиэдров (стереоэдров) на простых симплексах.
- Покрытие такими полиэдрами всего пространства (нормальное, правильное разбиение).
- Определение симплициальных комплексов.
- Аналоги гомотопных преобразований на комплексах-преобразования на граничных зв.полиэдрах (гомотопные волны).

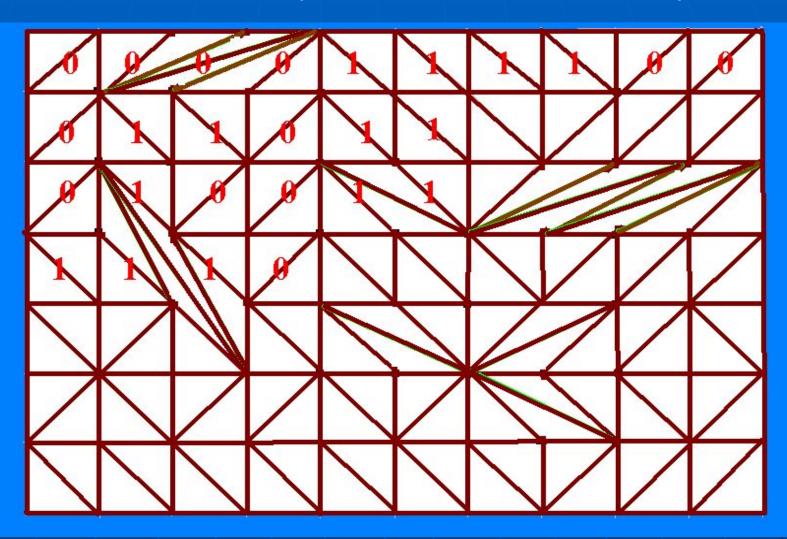
(Z^2, U_1) и все 6 типов 2d зв.полиэдров



Перестройки разбиения - выделение параллелограммов и замена диагоналей.



Двоичный код-инвариант при перестройках 1-го типа (диагональ-диагональ)

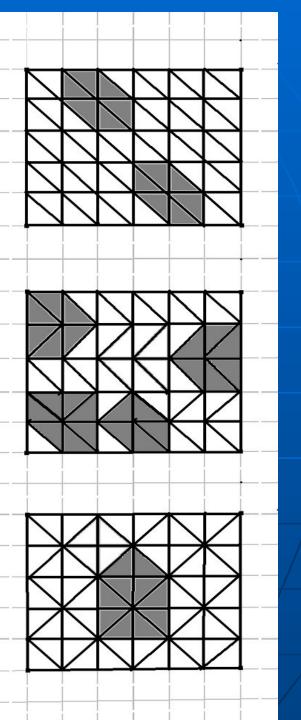


Классификация типов зв. полиэдров.

1.Транслируемые.

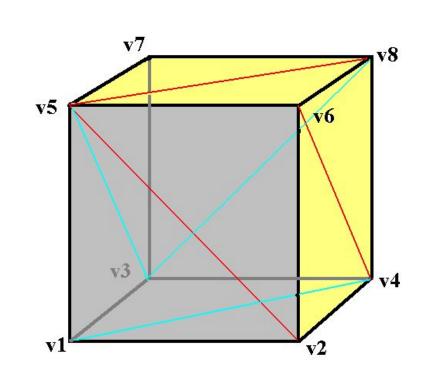
• 2.Конгруэнтные.

3.Парнотранслируемые.



Перечисление всех неконгруэнтных триангуляций куба.

- Любая триангуляция на вершинах куба порождает диагональное разбиение граней куба.
- Каждому разбиению соответствует вектор степеней вершин (инцидентных диагоналей).
- Разные векторынеконгруэнтные триангуляции.
- v1-1,v2-1,v3-2,v4-2,v5-3,v6-1, v7-0,v8-2;
- (1,3,3,1)



Диофантовы уравнения.

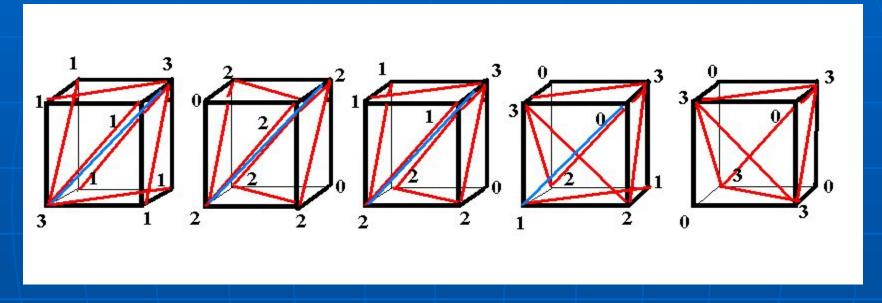
- і-число диагоналей сходящихся к вершине.
- х_і-число вершин с і сходящимися диагоналями.

$$\Sigma x_i = 8; i = 0-3;$$

$$\Sigma i x_i = 12; i = 0-3;$$

• Решения: (2,2,2,2);(0,6,0,2); (1,3,3,1); (2,0,6,0);(4,0,4,0);(0,4,4,0);

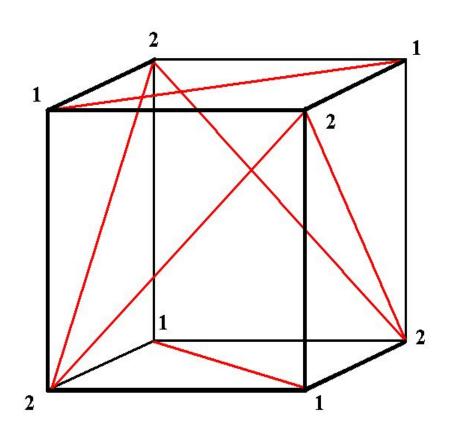
Все типы неконгруэнтных триангуляций куба.



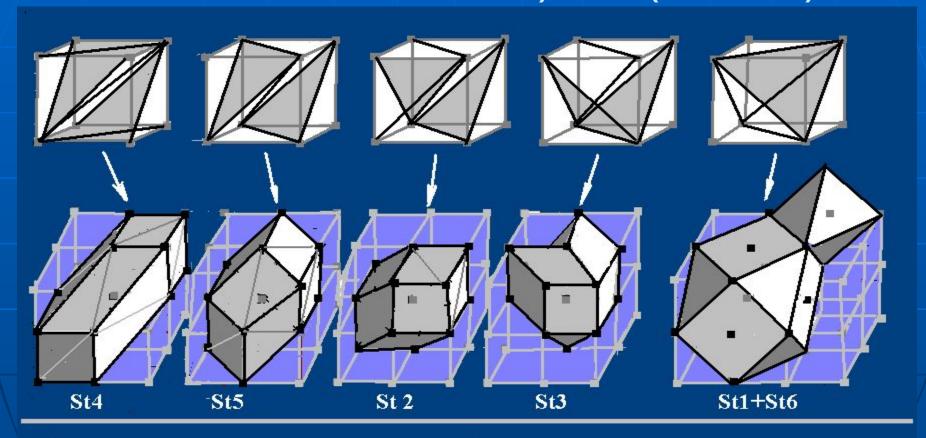
 \bullet (0,6,0,2) (2,0,6,0) (1,3,3,1) (2,2,2,2) (4,0,0,4)

Решение (0,4,4,0) не соответствует никакой триангуляции.

Ни при какой диагонали внутри куба невозможно правильное разбиение на пирамиды.



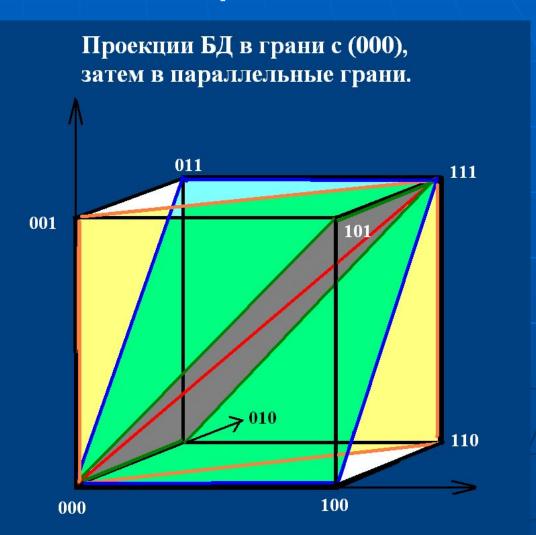
Все 3d звездчатые полиэдры (4 типа симплексов) на (Z3,V1).



Пять различных типов сечения куба и соответствующие полиэдры: St4,St5-транслируемые, St2,St3-конгруэнтные, St1+St6-парно транслируемые.

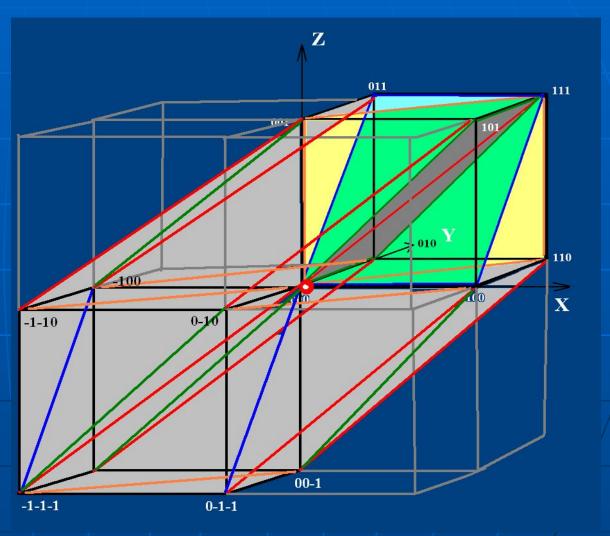
Разбиение кубов проекциямитранслируемая полиэдризация R³.

 Разбиение единичного куба на 6 тетраэдровсимплексов.



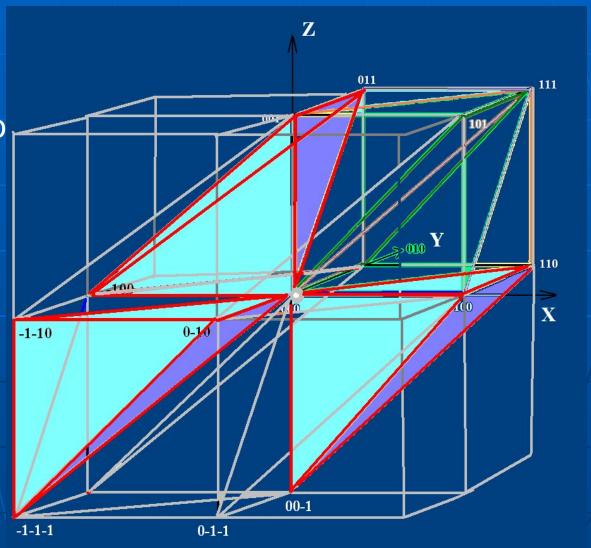
Ребра и грани вокруг (0,0,0)

- Трансляция построений во все кубы R3.
- Звездный полиэдр для (0,0,0)



Структура полиэдра.

- 24 симпплекса внутри транслируемого звездного полиэдра.
- Объем полиэдра V=24x1/6=4.

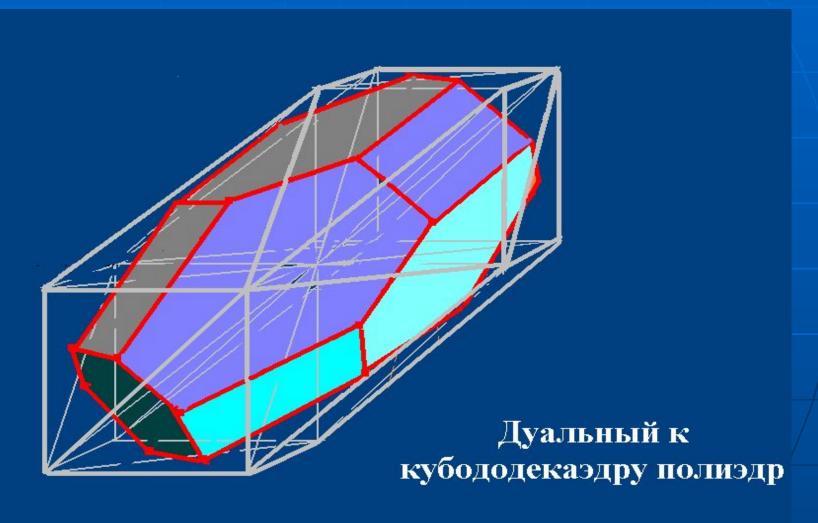


Транслируемый 3d звездчатый полиэдр MSP.

- Кубододекаэдр-14, 36,24.
- Вершин-15 (1+14)
- Pe6ep- 50(14+36)
- Граней-48(24+24)
- 3d симплексов-24
- Объем=4
- Строго выпуклый (по Малеру)



Дуальный полиэдр.

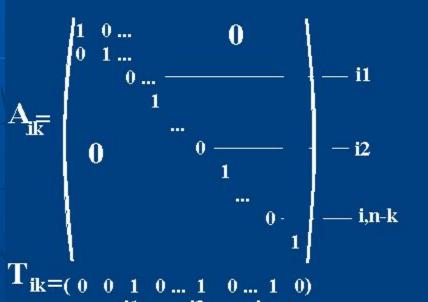


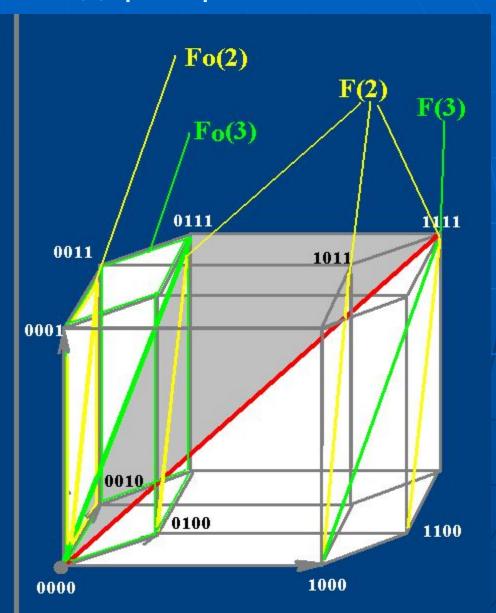
Построение транслируемых nd-полиэдров как отображение Rⁿ на подпространства.

1.Отображение (проекция) п-куба с большой диагональю на k-грани Fo(k), ортогональные п-к координатным осям и содержащим (0,0,...0). (C_n^k)

2.Трансляция каждой проекции в 2^{n-k} "параллельных" k-граней.

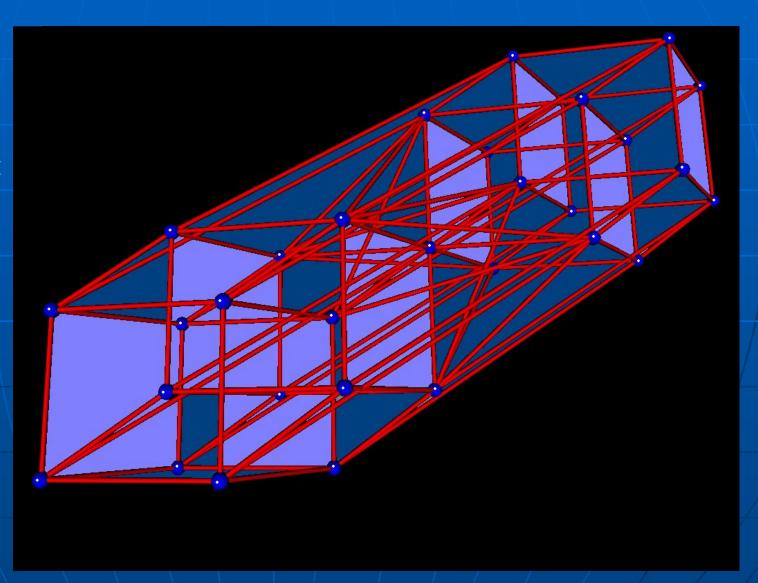
$$Fo(k) \bot e_{i1}, e_{i2} \quad \dots e_{i,n-k}$$





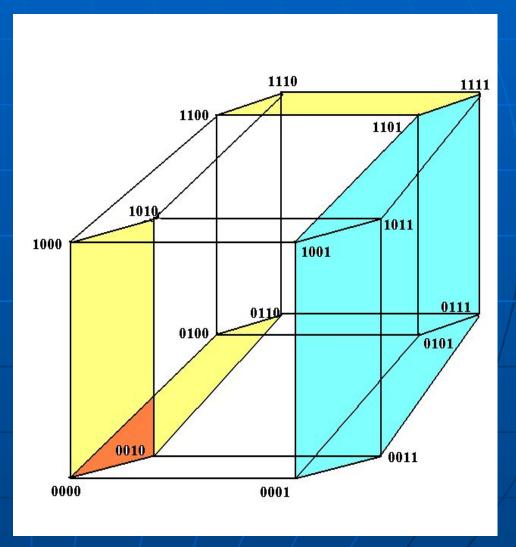
Транслируемый 4d зв. полиэдр.

Два полярных 4d куба с одной общей вершиной и доп. ребрами.



Структура n-куба.

- f(Iⁿ)=(f₀,f₁,f₂,...f_{n-1},f_n)
 вектор граней.
- f_0 -число вершин;
- f_1 -число ребер;
- f_2 -число квадратов;
- f₃-число кубов;...
- f_n - I^n ;
- $f_k = C(n,k)2^{n-k};$
- $f(I^4)=(16,32,24,8,1);$

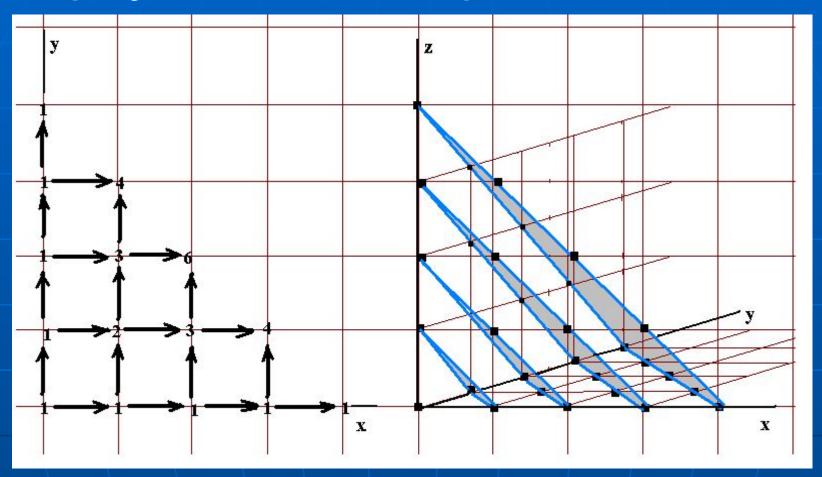


Характеристика Эйлера-Пуанкаре

- Формула Эйлера:В-Р+Г=2
- Топологический инвариант

$$\chi = f_0 - f_1 + f_2 - f_3 + ... + (-1)^{n-1} f_{n-1};$$

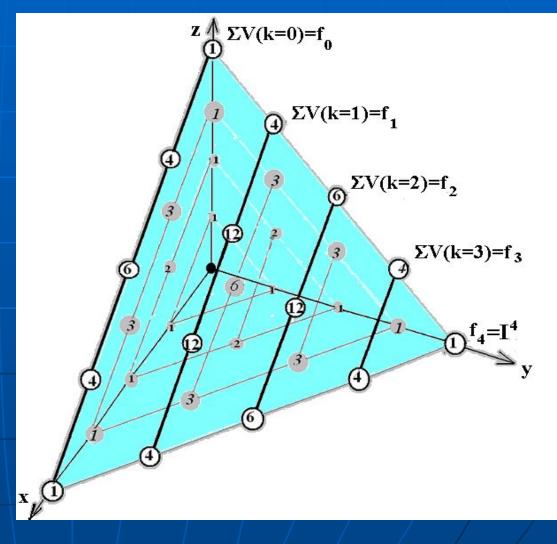
Треугольник и пирамида Паскаля.



- Треугольник C(x,y)=C(x-1,y)+C(x,y-1);C(0,0)=1;
 - Пирамида $V(x,y,z)=V(x-1,y,z)+V(x,y-1,z)+V(x,y,z-1);\ V(0,0,0)=1;$

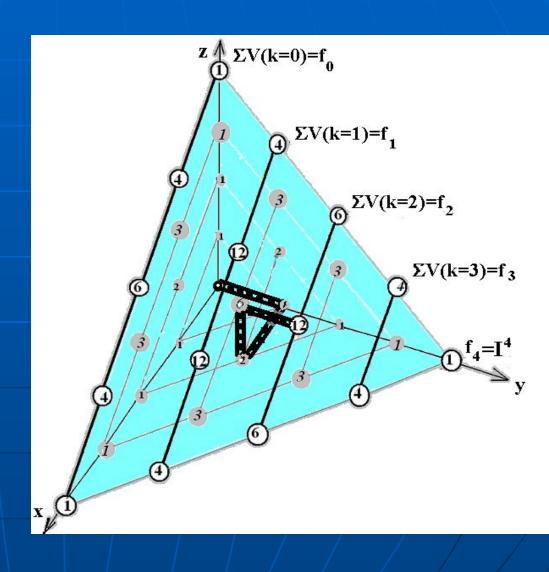
Триномиальные коэффициенты.

```
(a+b+c)^n
 V(n,k,l)albkcn-k-l
 l=x;k=y;n=x+y+z;
 V(n,k,l) = n!/l!k!(n-k-l)!
 \Sigma V(n,k,l)=C(n,k)2^{n-k};
 l=1-(n-k);
\Sigma V(n,k,l)=f_k;
(16,32,24,8)
```



Кодирование к-граней.

- Каждой k-грани соответствует кратчайший путь по решетке в вершину слоя п с y=k;
- Каждый путь кодируется троичным кодом. {0,1,2}

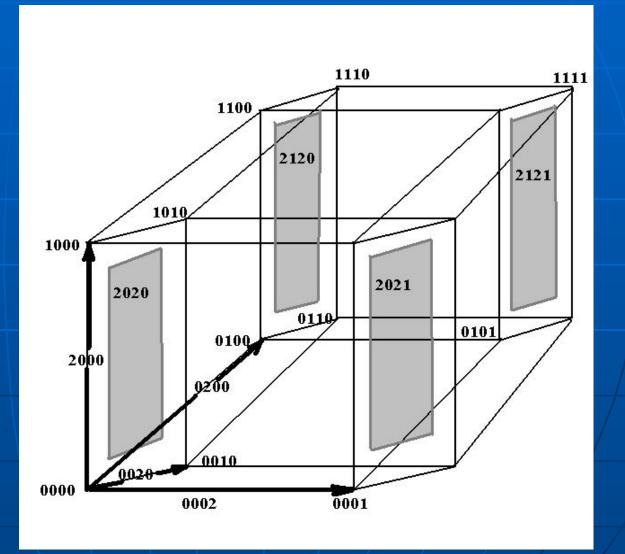


Кодировка I⁴

- 0000 в 0001 в 0002 р 0010 в 0011 в 0012 р
- 0020 р 0021 р 0022 к 0100 в 0101 в 0102 р
- 0200 р 0201 р 0202 к 0210 р 0211 р 0212 к
- 0220 к ... 2220 г 2221 г 2222 I⁴
- Вершины- традиционная кодировка.
- Ребра- коды с одной «двойкой»
- К-грани- с к «двойками»

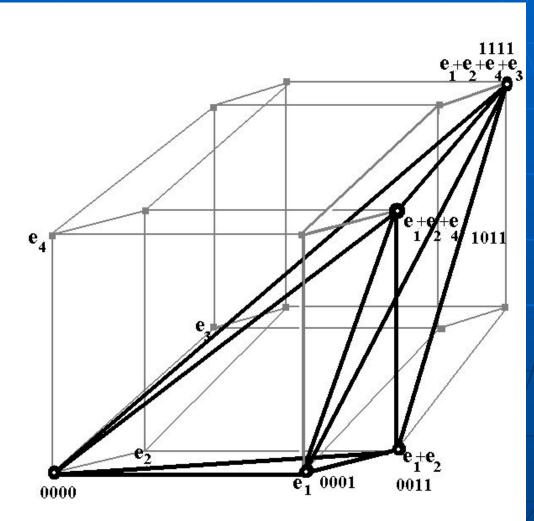
Геометрическая интерпретация

- Код 2120
- Ребра 0020 и2000 -> грань2020
- Грань 2020транслируетсяиз (0000) в(0100)



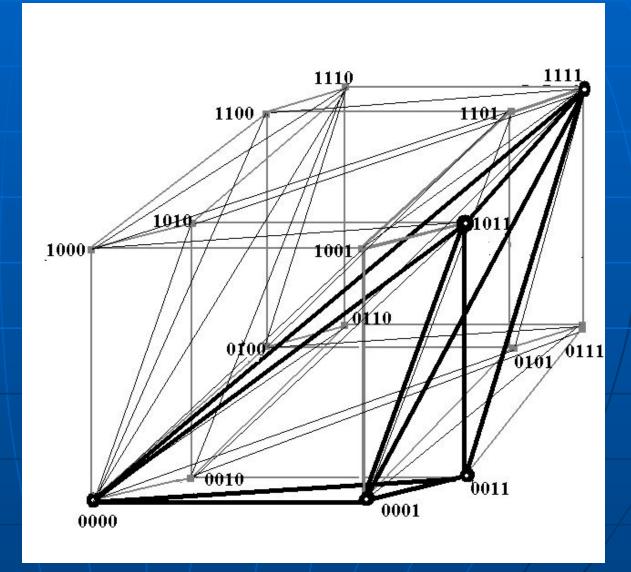
Генерация примитивной триангуляции (путевые симплексы)

- Симметрическая группа подстановок S_n .
- s_i € S_n
- 1 2 3 ... n
- a_{i1} a_{i2} a_{i3}... a_{in}
- e_{ai1}, e_{ai1}+e_{ai2},
 e_{ai1}+e_{ai2}+e_{ai3},... последовательные
 вершины симплекса
- Puc. -> 1 2 4 3

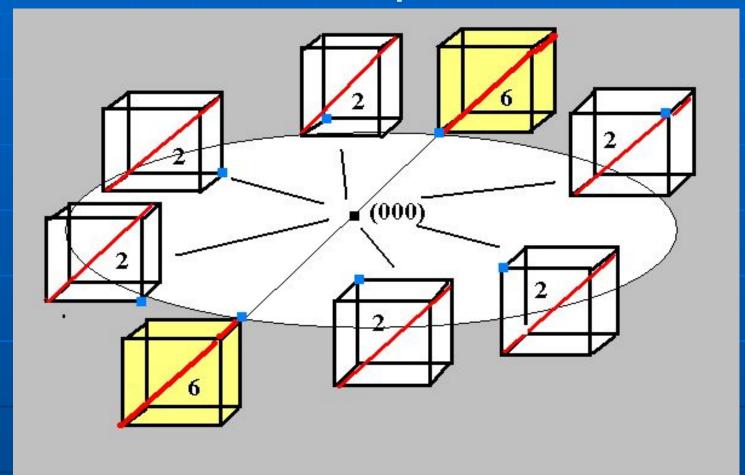


Примитивная триангуляция I⁴.

 24 симплекса могут быть закодированы 5-ью двоичными разрядами.



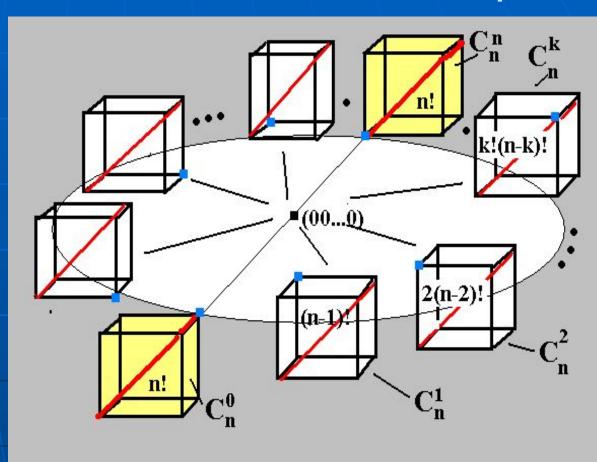
3d звезда-полиэдр и ее симплексы.



 Вклад кубов (по числу симплексов) из 8 октантов, содержащих (000).

Симплициальная структура транслируемого nd звезды-полиэдра

- W(k)-число симплексов с вершиной r=k
- S(k)-число nкубов с вершиной r=k в (00...0)
- W(k)=k!(n-k)!;
- S(k)=C(n,k);
- S=Σ W(k)S(k)= (n+1)!;
- V(P)=n+1;



Кодирование симплексов.

```
1234,1243,1324,1342,1423,1432,
0 1 2 3 4 5
2134,2143,2314,2341,2413,2431,
5 7 8 9 10 11
3124,3142,3214,3241,3412,3421,
12 13 14 15 16 17
```

- 4123,4132,4213,4231,4312,4321
- **.** 18 19 20 21 22 23
- $a_0 n! + a_1(n-1)! + ... + a_{n-2} 2! + a_{n-1} 1! = N^0; a_k < k+1;$
- 21=(3,1,1) -> 4231:3+1=4, 1+1=2-ая из ост. ->2, 1+1=2-ая из ост.->3; и ост.1

Транслируемые звездчатые nd-полиэдры.

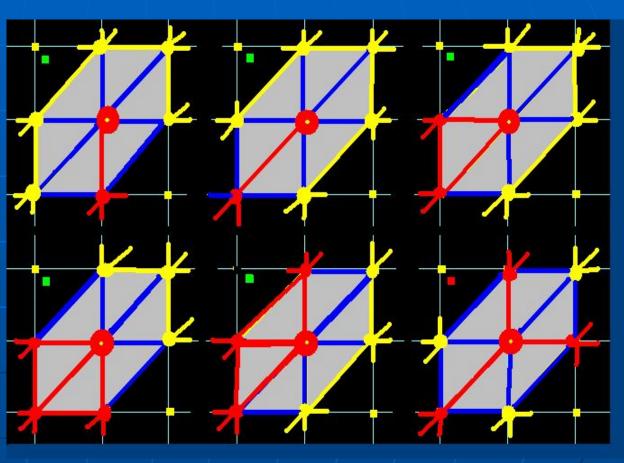
1		2d	3d	4d	5d	6d	7d	
-	В	6	14	30	62	126	254	
_	S	6	24	120	720	5040	40320	
_	V	3	4	5	6	7	8	

Гомотопные расширения и сжатия комплексов-сумма преобразований MSP на границе комплексов.

- Топологический контроль-проверка связности в MSP до и после преобразования.
- Для общего 3d случая объем вычислений $Q \sim N^3 \times V \times E \times N$ (для $N = 10^3$ $Q = 10^{14}$ память M = 100Гb)
- Для топол. процессора $Q = 10^{11} M = 1\Gamma b$

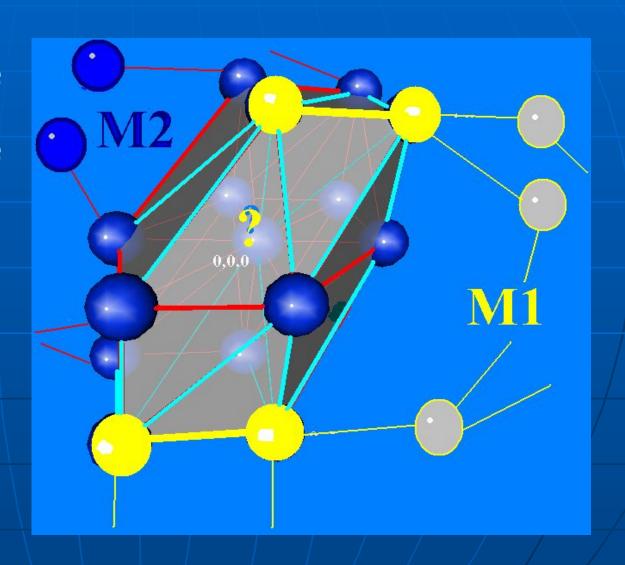
Допустимые преобразования без склеек и разрывов.

Расширение «желтого» без склеек и разрывов «желтого» и «красного» зависит только от ситуации в «выколотом» зв.полиэдре.

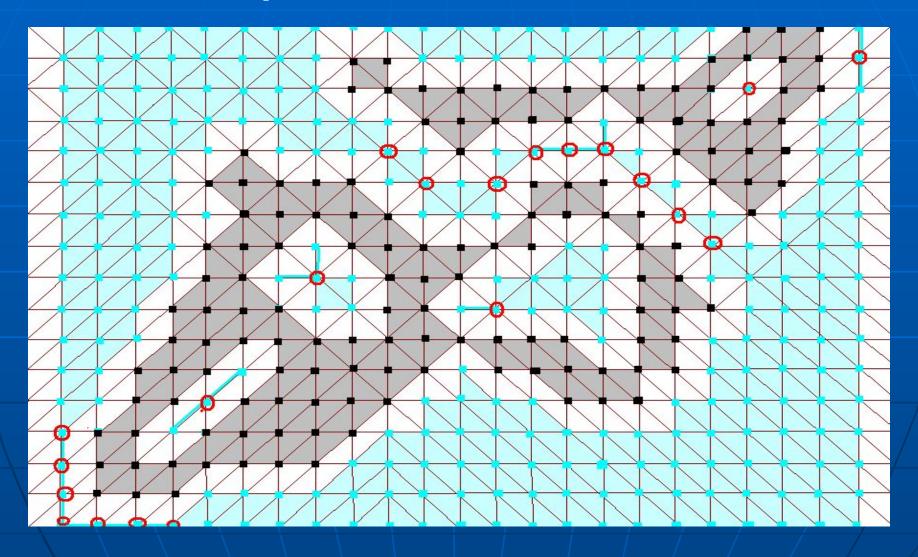


Анализ связности множеств М1 и М2 на границе полиэдра.

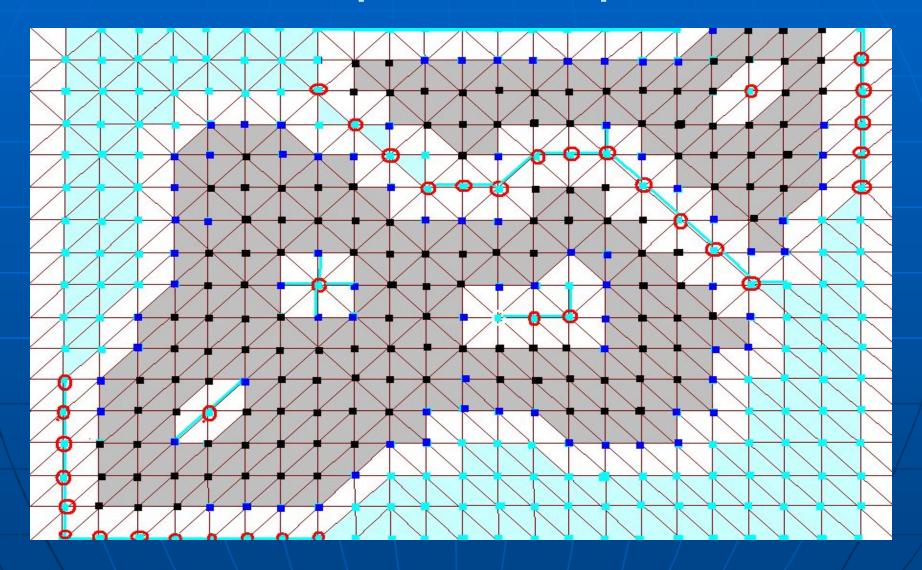
- М1 на границе несвязно.
- M2 на границе связно.
- Если переход (000) в М1, то М1 и М2 связны- изменения в связностях недопустимы!



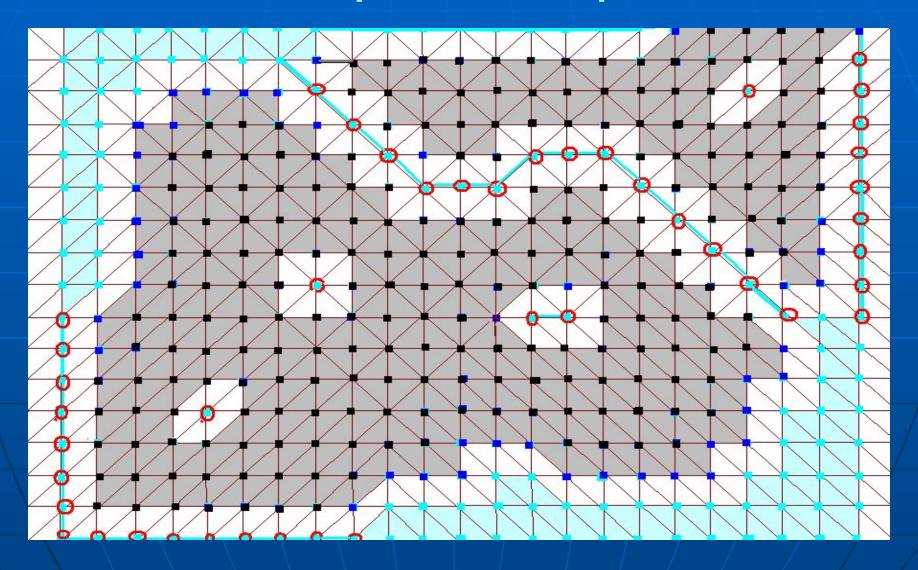
Три 2d комплекса



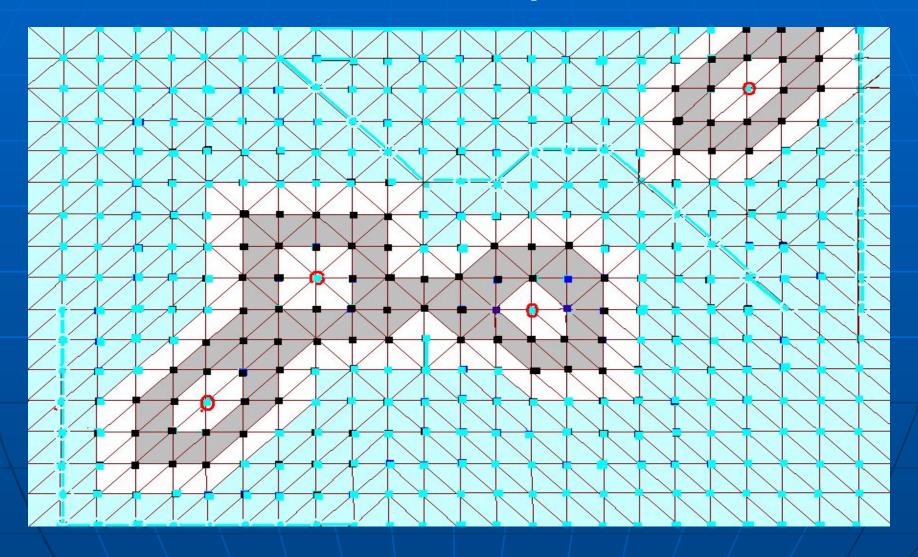
Расширение черного.



Расширение черного.



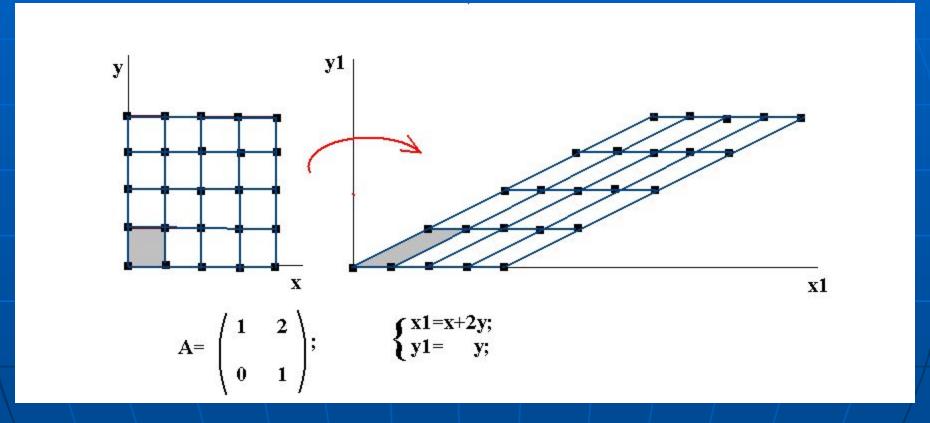
Сжатие черного.



Приближение к евклидовой метрике на Zn.

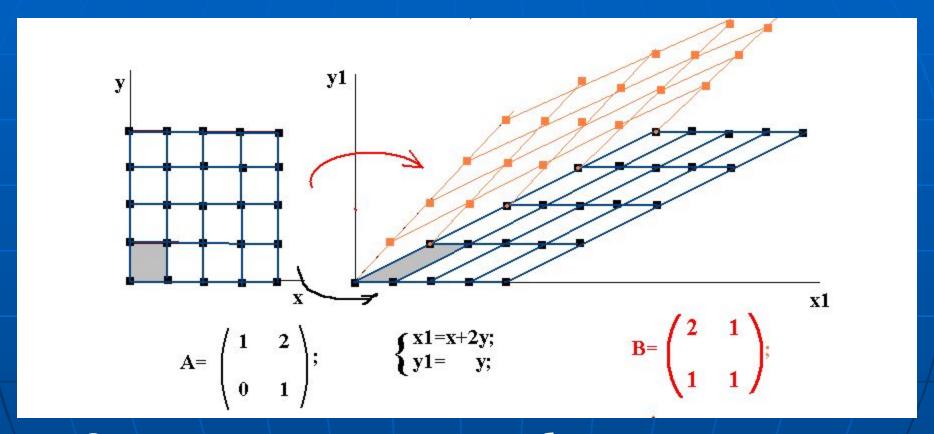
- Метрика на ребрах звездчатых полиэдров (многогранная метрика) далека от евклидовой.
- Расширить множество простых ребер (увеличить норму) в зависимости от заданной погрешности приближения.

Линейные преобразования на решетках.



- Унимодулярные матрицы- модуль определителя =1.
- Линейные унимодулярные преобразования сохраняют площадь (объем) фигур(тел).

Составление веера.



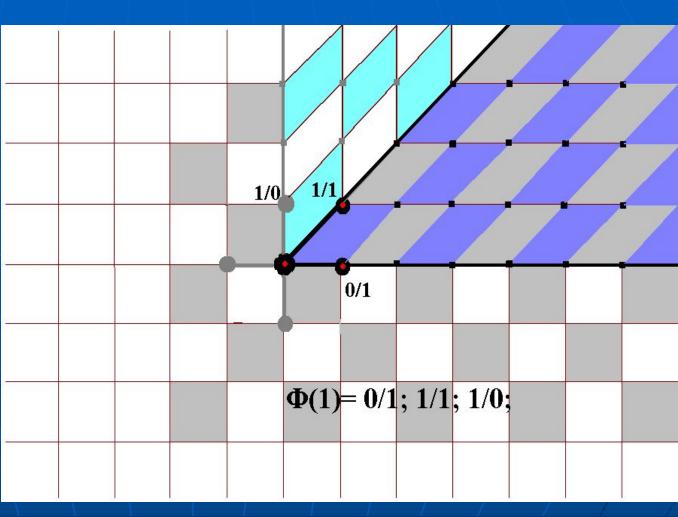
 Стыковку секторов веера обеспечивают «соседние» унимодулярные матрицы.

Несократимые дроби и простые ребра (веер Фарея).

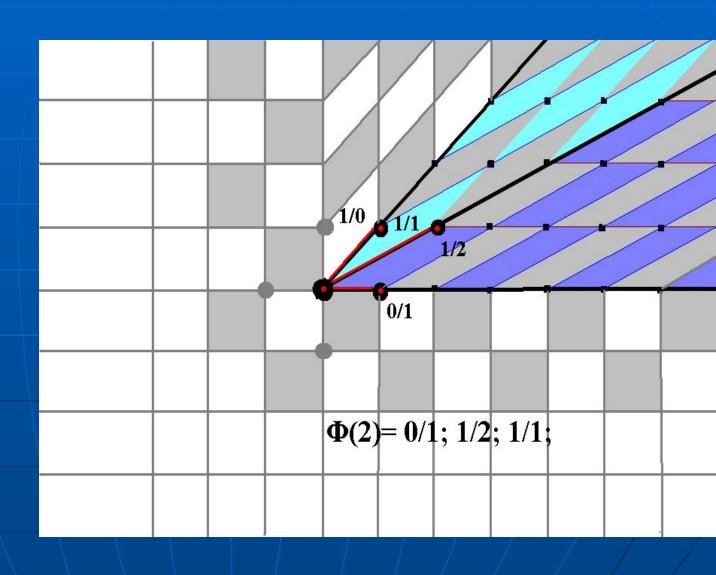
В каждом секторе целые точки образуют решетки с базисами {(0,1),(1,1)}; {(1,1),(1,0)}.

С увеличением порядка Ф(к) длина по ребрам решеток приближается к евклидовой.

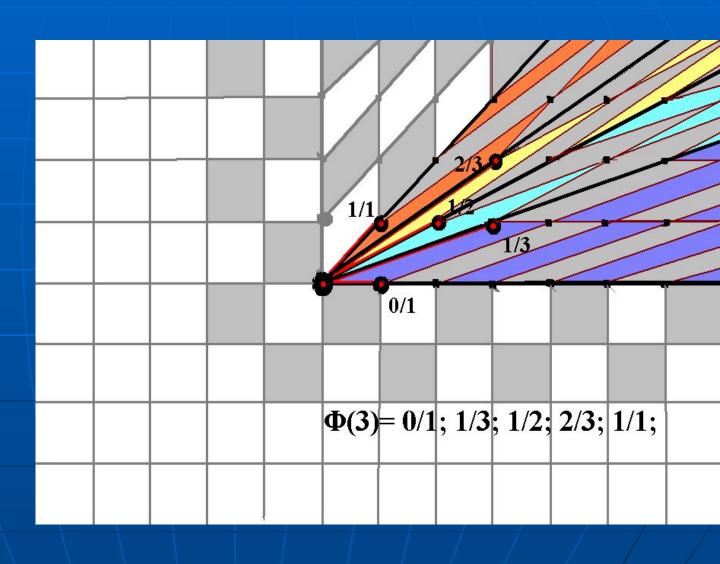
 Δ =L-Le/Le= \sim $\Phi^2/4+o(\Phi^4)$;



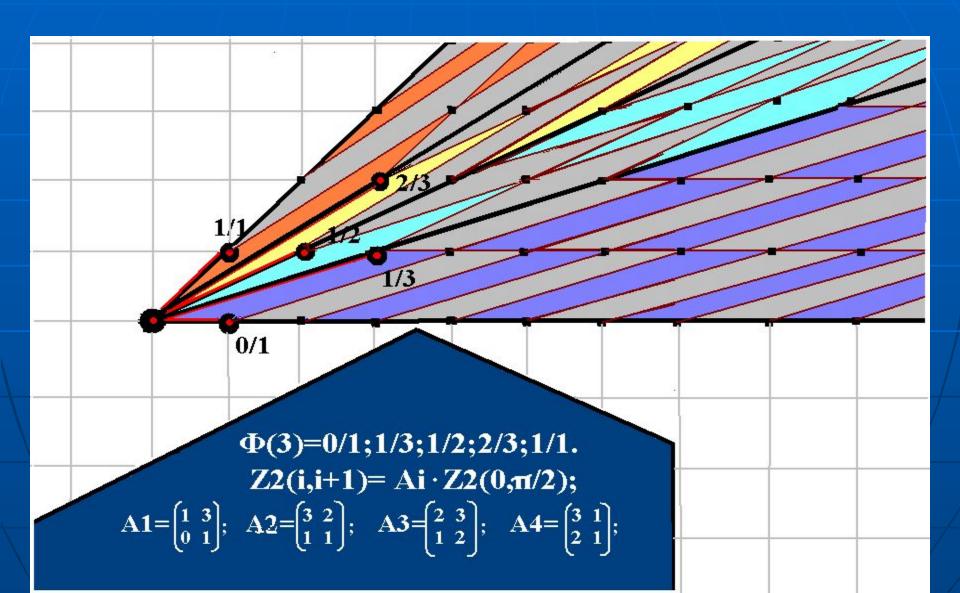
Увеличение порядка Ф(к).



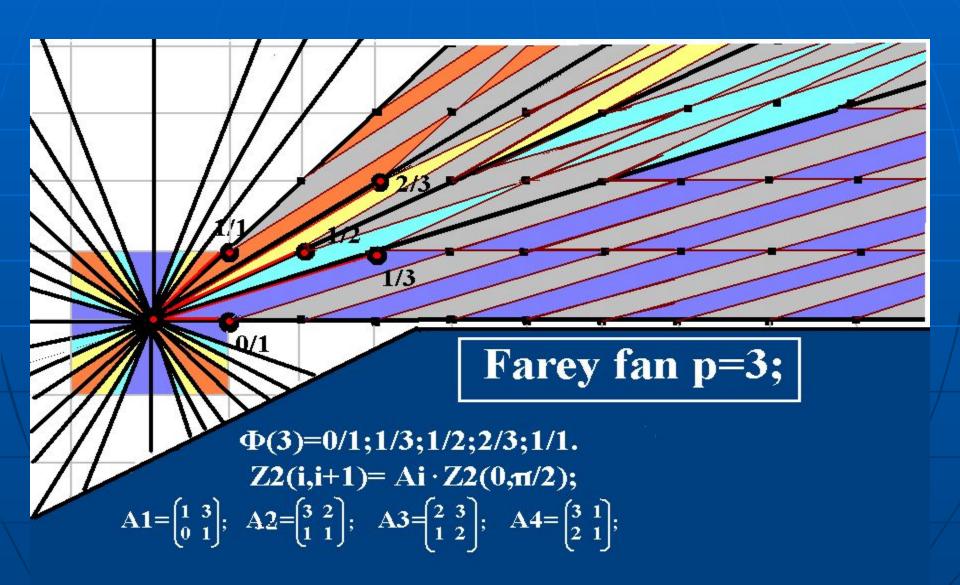
Увеличение порядка Ф(к).



Отображения $Z^2(0,\pi/2)$ на $Z^2(i,i+1)$



Веер Фарея 3-го порядка.



Неравномерность уменьшения углов в секторах веера.

- Для веера Ф(3):
- Сектор ((0/1)(1/3))~1/3.
- Сектор $((1/3)(1/2))\sim 1/6$.
- Коррекция процедуры генерации несократимых дробей-наибольшие углы разбивать чаще.

Приближение к евклидовой метрике.

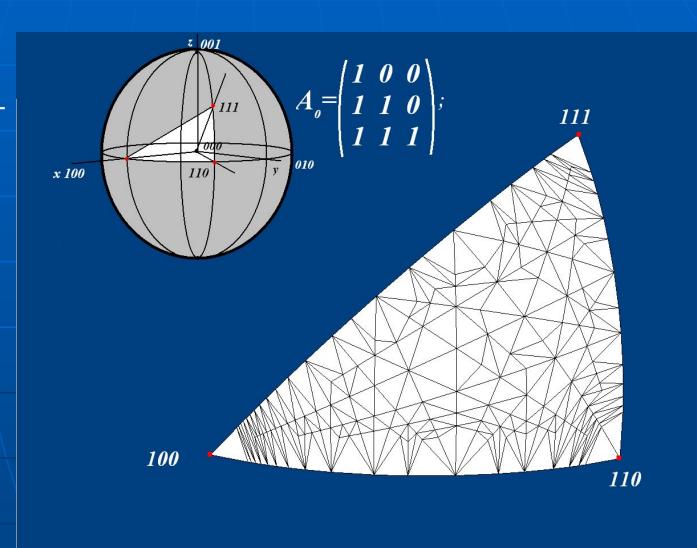
- Для сектора веера с базисом b_i,b_j и углом ф:
- $L=\lambda_1\rho(b_i)+\lambda_2\rho(b_i)$;на решетке,
- L_e-евклидова длина между этими точками.
- Максимальная отн. погрешность в секторе:
- $\Delta m(\phi) = L L_e / L_e = \phi^2 / 4 + O(\phi^4 / 16);$

Для построения веера в Rn.

- Множество целочисленных квадратных матриц:{Аі}.
- Ai = 1 сохраняет объемы.
 Бесконечная группа с Е-ед.диагон.м.
- Аналог несократимых дробейпростые целые п-мерные вектора (компоненты вектора, как целые числа не имеют общего делителя >1).

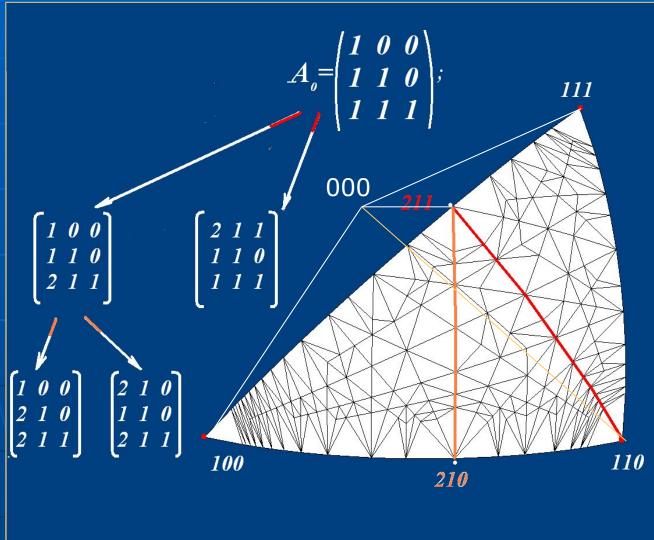
Построение 3d веера для заданной Δитерационная процедура на1/48 сферы.

Вырезанному сектору соответствует матрица Ао из простых векторов. IAoI=1;Замена строки в матрице суммой строки с другой не меняет ОСНОВНЫХ свойств матрицы.



Веерная триангуляция.

Определение грани(ребра) с макс. углом и разбиение ребра сложением векторов (строк матрицы). Продолжение процедуры, пока макс. угол $< \phi 0(\Delta)$. Затем зеркальные отображения на всю сферу.

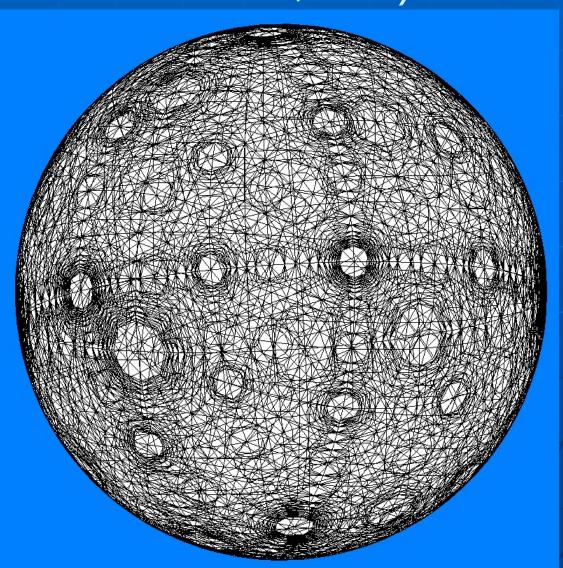


Nd-случай.

- Для nd случая триангулируется (а затем и хранится в памяти) 1/2ⁿ n!
 часть nd сферы.
- Вся nd сфера может покрываться зеркальными отображениями.

Проекция 3d веера на сферу (для Δ=L-Le/Le=0,001)

- После зеркальных отображений 1/48 части на всю сферу.
- Веер содержит7610 ребер.



Сравнение по числу ребер 3d веера Фарея и решеточного расслоения.

•	K	2	3	4	5	6	19	
•	Δ(%)	4,85	2,41	1,44	1,17	0,76	0,1	
-	N(k)	98	290	578	1154	1730	50114 (~k³)
	N*	74	194	266	530	722	7610 (<i>r</i>	~k ²)

Основные операции прототипа топологического процессора.

- Задание решетки и метода полиэдризации.
- Задание границ и преград.
- Задание комплексов. Индексные массивы(1:128)
- Определение связности комплексов и характеристики Эйлера-Пуанкаре.
- Задание преобразований и их режимов (целевых функций).
- Проведение преобразований. Анализ MSP-один такт!
- Выделение триангулированной границы.
- Генерация решеточного веера по заданной погрешности.
- Прогон метрической волны от множества-источника и построение эквидистантного графа.
- Операции над эквидистантными графами.
- Все операции эмулированы и верифицированы на решетках до 200x200x200.
- Видеопоказ на http://www.vizcom.srcc.msu.ru

Построение «сферы» как 2d многообразия.

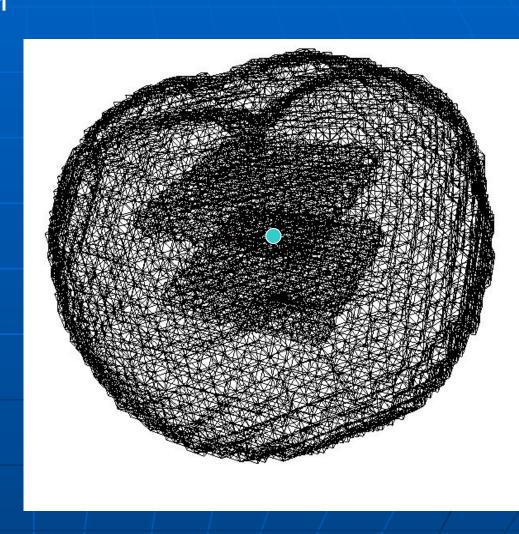
Заданы центр «сферы» и преграды(2пластины).

Построить «сферу» минимального радиуса.

Условие: преграды внутри «сферы», $\Delta =$ 0,01;

Схема решениягенерация веера для Δ =0,01;метрическая волна и эквидистантный граф;сжатие комплекса до преград; выделение трианг. границы. (750 000 симплексов)

 $T(2\Gamma\Gamma_{4},512Mb)=2мин.$



Ближайшие задачи.

- Перенос комплекса на кластер НИВЦ МГУ с целями:
- 1.Решение задач на решетках:3d-2000³,4d-500⁴,5d-200⁵,6 d-50⁶.
- 2.Использование распараллеливания, потенциально близкого к клеточным автоматам.
- 3.Полиэкранная визуализация сечений многомерных комплексов.

Основные ссылки.

Л.С.Понтрягин. Основы комбинаторной топологии.

- П.С.Александров. Комбинаторная топология.
- Б.Н.Делоне. Теория стереоэдров.
- К.Чандрасекхаран. Введение в аналитическую теорию чисел.
- Д.Касселс. Введение в геометрию чисел.
- И.М.Гельфанд. Лекции по линейной алгебре.
- В.А.Ковалевский. Конечная топология.
- Ж.Бертран, М.Купри. Гомотопные преобразования.
- И.Кенмочи, А.Имийя. Глобальная полиэдризация.
- Г.Г.Рябов. Метрические и топологические волны на решетках.
- О.Д.Авраамова. Язык VRML.

Поклон корифеям!

■ П.С.Александров

Л.С.Понтрягин

Б.Н Делоне