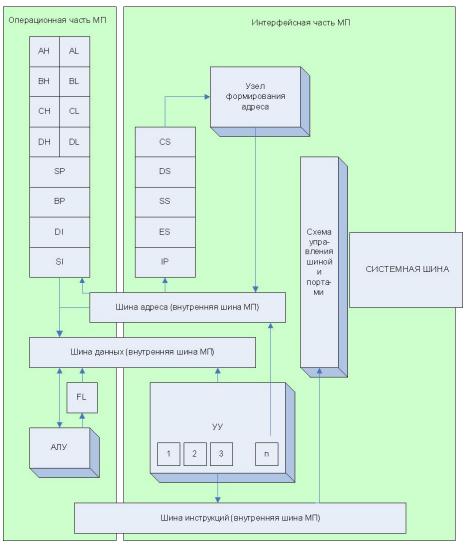
# Запоминающие устройства ПК.


#### Вопросы:

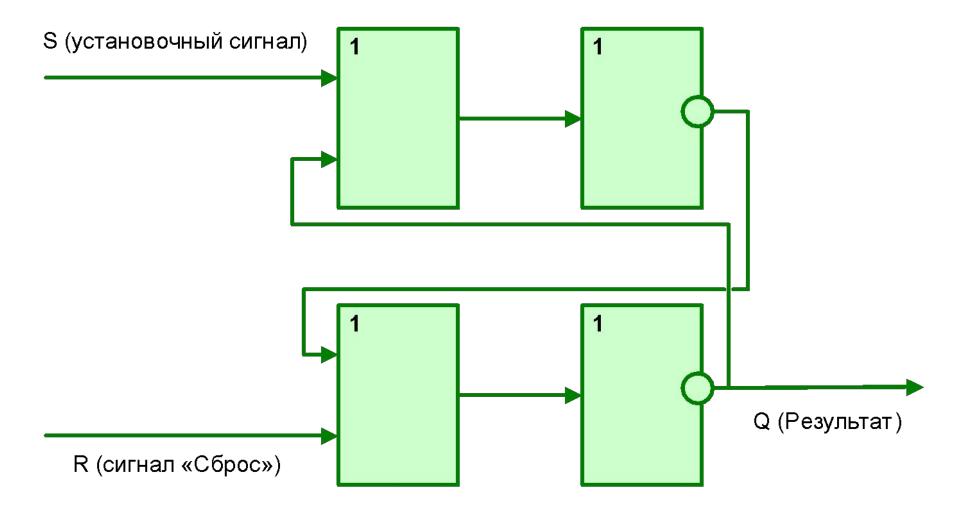
- <u>1. Регистровая память. Кэш-память.</u>
- 2. Основная память. Статическая и динамическая оперативная память.
- 3. Внешние ЗУ.

## Уровни памяти / Иерархия ЗУ

| УРОВЕНЬ                                                            | Время<br>доступа         | Объём                                                | Удельная<br>стоимость<br>хранения |
|--------------------------------------------------------------------|--------------------------|------------------------------------------------------|-----------------------------------|
| МПП - сверхоперативное ЗУ, регистры (доступ за 1 такт процессора). | ~ 2-3 нс                 | Десятки<br>байт                                      | MAX                               |
| <b>Кэш-память</b> – буферное ЗУ (доступ 1-2, 3-5 тактов).          | ~ 5-8 нс                 | Десятки-<br>сотни<br>Кбайт                           |                                   |
| Основная память (ОП) ОЗУ (до 20 тактов). ПЗУ – «постоянное ЗУ».    | ~ 5-20 нс<br>~ 35-100 нс | Сотни-<br>тысячи<br>Мбайт,<br><sub>Сотни</sub> Кбайт |                                   |
| Внешняя память (ВЗУ)<br>НГМД, НЖМД, НМОД, НМЛ                      | Десятки мс               | Сотни-<br>тысячи<br>Гбайт                            | Min                               |

#### Микропроцессорная память




#### МПП МП і8088

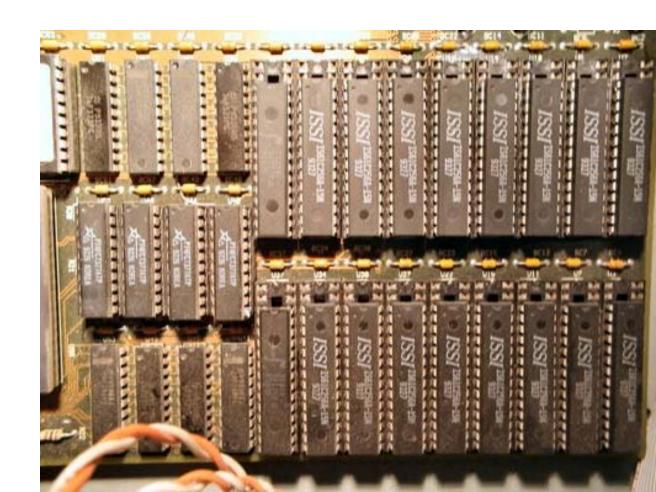
#### 14 регистров:

- Универсальные АХ, ВХ, СХ, DХ для временного хранения любых данных
- Сегментные CS, DS, SS, ES для хранения сегментных адресов полей памяти
- Смещения IP, SP, BP, SI, DI для хранения внутрисегментных смещений адресов
- Флагов FL

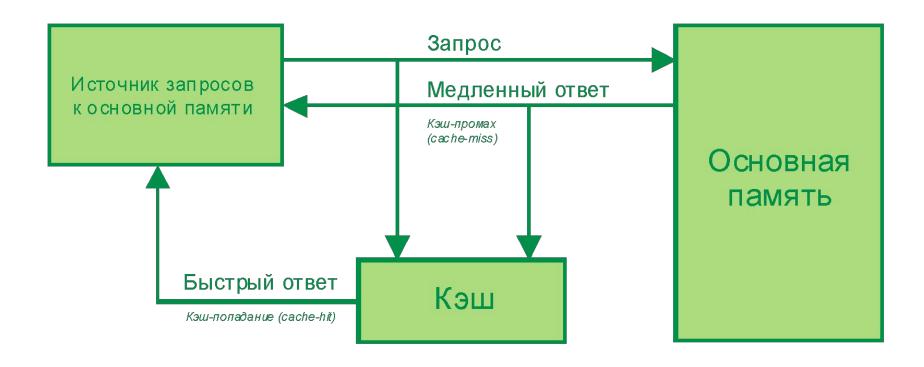
Упрощённая структурная схема МП

## Триггер




#### Cache

Кэширование (хеширование) - способ совместного функционирования двух типов запоминающих устройств, отличающихся временем доступа и стоимостью хранения данных, который за счёт динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ позволяет:


- с одной стороны, уменьшить среднее время доступа к данным,
- а с другой стороны, экономить более дорогую более быстродействующую память.

## Cache memory

Собственно кэш-память - физический конструктив



#### Принцип действия кэш-памяти



- *L1*, встроен в основное ядро МП
- L2, на плате МП / на материнской плате
- L2/3, на материнской плате
- *L3/4*, в поле ОП / в модуле ВЗУ



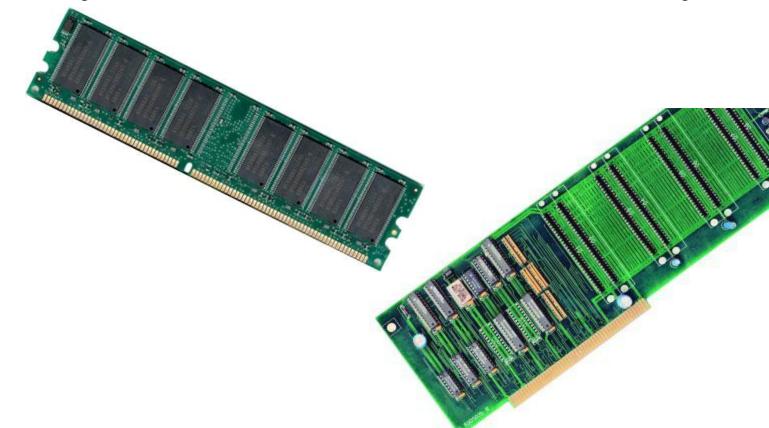
# Запоминающие устройства ПК.

#### Вопросы:

- 1. Регистровая память. Кэш-память.
- 2. Основная память. Статическая и динамическая оперативная память.
- 3. Внешние ЗУ.

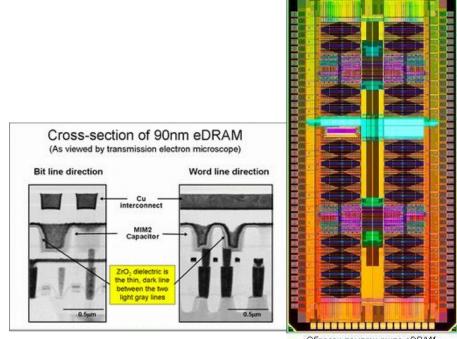
### Основная память (ОП)

• ОЗУ (RAM, Random Access Memory)



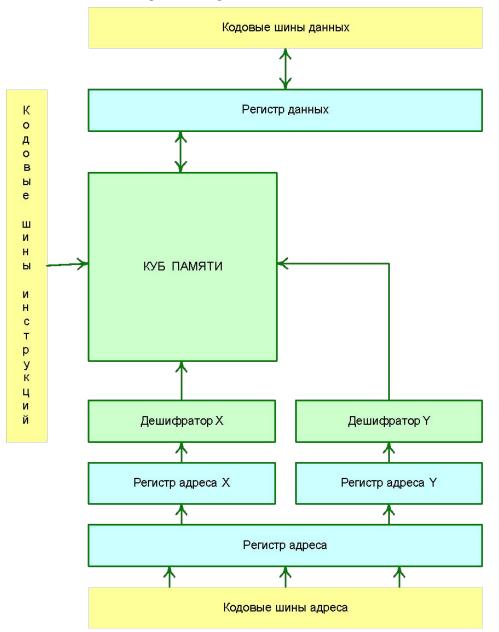

• ПЗУ (ROM, Read Only Memory)

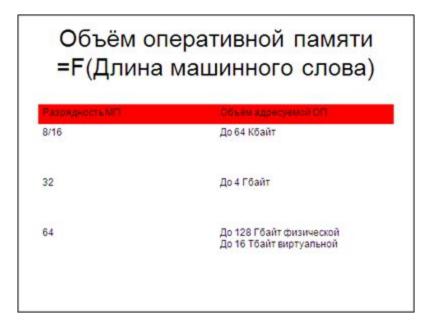



### Типы микросхем ОЗУ

- SRAM, Static Random Access Memory
- DRAM, Dynamic Random Access Memory




#### *eDRAM*

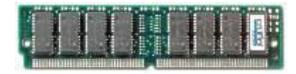

- Embedded DRAM -«Встроенная память DRAM»
- Скорость сравнима с SRAM
- Уменьшение в 3 раза площади поверхности процессора, отводимой под память (сейчас у *Intel Core Duo* – 60%)
- Сокращение в 5 раз энергопотребления в пассивном режиме



Образец памяти типа eDRAM

#### Структурная схема модуля памяти






## <u>Конструктивы модулей</u> ОЗУ

DIP, Dual In-line Package



SIMM, Single In-line Memory Module



• DIMM, Dual In-line Memory Module



- RIMM<sup>TM</sup>, «Rambus In-line Memory Mocalien
- mobile





#### Разновидности ОЗУ

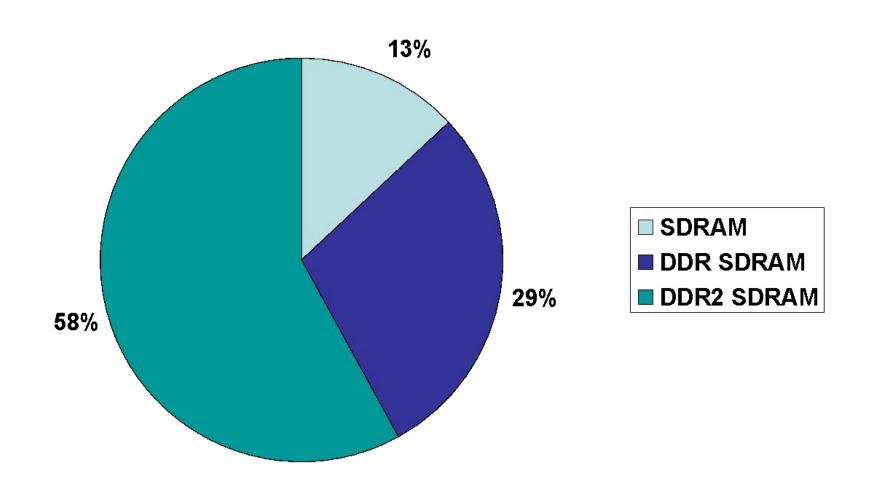
#### SIMM

- FPM DRAM, Fast Page Mode DRAM
- RAM EDO, RAM Extended Data Out
- BEDO DRAM, Burst Extended Data Output

•

#### **DIMM**

- SDRAM, Syncronous DRAM
- DDR 1,2 SDRAM, Double Data Rate SDRAM
- RDRAM, Rambus DRAM
- DRDRAM, Direct Rambus DRAM
- GDDR 1,2,3,4 SDRAM, Graphics DDR
- SDR SDRAM


• ...

#### Mobile:

- Mobile SDRAM
- •



## Рынок *DRAM*: \$ 28,7млрд.



#### ПЗУ

#### Типы ПЗУ по технологии записи:

- ПЗУ / ROM «масочные», программируемые только при изготовлении,
- ППЗУ / *PROM* программируемые однократно в лабораторных условиях,
- Перепрограммируемые ПЗУ / *Erasable PROM* программируемые многократно.

# Запоминающие устройства ПК.

#### Вопросы:

- <u>1. Регистровая память. Кэш-память.</u>
- 2. Основная память. Статическая и динамическая оперативная память.
- 3. Внешние ЗУ.

#### ВЗУ: внешняя память

| НКЛМ, накопитель на кассетной магнитной ленте, стример | Streamer                                            |
|--------------------------------------------------------|-----------------------------------------------------|
| НГМД, накопитель на гибких<br>магнитных дисках         | FDD, flexible disk drive                            |
| НЖМД, накопитель на жёстких<br>магнитных дисках        | HDD, hard disk drive,  ZIV disk, portable USB disk, |
| НЛКД, накопитель на лазерном компакт-диске             | CD ROM, compact disc read only memory               |
| НОД, накопитель на оптическом<br>диске                 | DVD ROM,R+/-, RW+/- digital versatile disc          |
| Флеш-карта                                             | Flash card                                          |
| Флеш-диск                                              | Flash drive                                         |

# НЖМД («винчестер») / HDD, hard disk drive

- Носитель данных пакет МД.
- Рабочая МД поверхность разбита на N окружностей (*дорожек*) от края к центру (в оптических дисках наоборот!).
- Цилиндр все дорожки одна под другой.
- Начало дорожки механически идентифицировано *маркером начала оборота.*
- MBR, main boot record.
- Запись и считывание производит блок магнитных головок (МГ).
- Резервные цилиндры, для замены дефектных дорожек.
- Этапы чтения/записи:
  - Механический подвод МГ к дорожке (T<sub>max</sub>!)
  - Ожидание подвода записи (время ротационного запаздывания)
  - Чтение/запись.
- НМД «с коротким ходом».
- Физические/Логические диски.

## «Отец» жёстких дисков Рей Джонсон (*IBM*)

#### HDD manufacturers

#### RAID

## Redundant Array of Inexpensive / Independent Disks,

## Избыточный (резервный) массив недорогих / независимых дисков

#### Уровни конфигурации:

**RAID 0** «расщепление» дисков, неотказоустойчивый дисковый массив

**RAID 1** зеркальный дисковый массив: два диска - зеркальные копии

**RAID 2** зарезервирован для массивов, которые применяют код Хемминга

**RAID 3, 4, 5** используют чётность для защиты данных от одиночных неисправностей (*RAID 5* – с распределёнными контрольными суммами)

**RAID 6** используют чётность для защиты данных от двойных неисправностей (с двойной контрольной суммой)







## Поколения дисковых накопителей

- 1. DAS, Direct Attached Storage диски, непосредственно подключаемые к серверам.
- 2. SAN, Storage Area Networking сети хранения, с 1992г.
  - NAS, Network Attached Storage диски, подключаемые к сети.
- 3. New! NUS, Network Unified Storage унифицированные сетевые системы хранения.
  - DAFS, Direct Access File Systems файловые системы с прямым доступом.
  - OBS, Object-Based Storage объектные системы хранения.

## Object-Based Storage

- Объект хранения: порция данных.
- Средство адресации: метаданные, генерируемые по набору данных.

Впервые на практике идеи OBS реализованы в дисковых массивах *CAS*, *Content Addressable Storage*.



**EMC Centera** 

Система хранения данных с адресацией по содержимому

#### The 2007 Nobel Prize on physics

Пауреатами Нобелевской премии по физике за 2007 год стали французский физик Альберт Ферт (Albert Fert), работающий в университете Université Paris-Sud, и немецкий физик Петер Грюнберг (Peter Grünberg) из института Forschungszentrum Jülich.

Пресс-релиз нобелевского комитета, посвященный новым лауреатам, озаглавлен «Нанотехнологии позволили создать чувствительные считывающие головки компактных жестких дисков» (Nanotechnology gives sensitive read-out heads for compact hard disks)

В 1988 году Альберт Ферт (р. 1938г.) и Петер Грюнберг (р. 1939г.) независимо открыли новый квантово-механический эффект -«гигантское магнетосопротивление» (Giant Magnetoresistance or GMR). В системах GMR слабое изменение намагниченности дает большую разницу электрического сопротивления. В 1997 году были разработаны первые считывающие головки, основанные на использовании эффекта *GMR*. Благодаря открытию физического эффекта «гигантского магнетосопротивления» стала возможной радикальная минитюаризация жестких дисков. Разработанные на основе открытия чувствительные считывающие головки сделали возможным создание современных жестких дисков, которые используются повсеместно – в ноутбуках, музыкальных плеерах и других компактных устройствах. Сегодня такие жесткие диски уже стали стандартной технологией.





#### CD vs DVD

| Технические характеристики                    | CD         | DVD         |
|-----------------------------------------------|------------|-------------|
| Расстояние между дорожками, мкм               | 1,6        | 0,75        |
| Скорость сканирования, м/с                    | 1,2        | 3,5         |
| Длина волны лазера, нм                        | 790        | 635         |
| Шаг спирали (расстояние между дорожками), мкм | 1,6        |             |
| Ширина пита, мкм                              | 0,5        |             |
| Числовая апертура объектива                   | 0,45       | 0,6         |
| Метод коррекции ошибок                        | CIRC       | RS-PC       |
| Модуляция                                     | 8-14 (EFM) | 8-16 (EFM+) |

#### DVD

| Маркировка | Ёмкость,<br>Гб | Число<br>сторон | Число слоёв<br>на стороне | Описание                     |
|------------|----------------|-----------------|---------------------------|------------------------------|
| DVD-5      | 4,7            | 1               | 1                         | Односторонний<br>однослойный |
| DVD-9      | 8,54           | 1               | 2                         | Односторонний<br>двухслойный |
| DVD-10     | 9,4            | 2               | 1                         | Двухсторонний<br>однослойный |
| DVD-18     | 17             | 2               | 2                         | Двухсторонний<br>двухслойный |





#### война окончена...

Toshiba

RW, ROM

15, 30, 45 Гбайт

36,5 Мбит/с

Специальный краситель

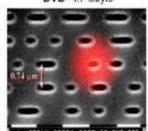
От 10\$ за диск

Sony

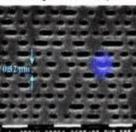
RW, ROM


25-50 Гбайт

36-72 Мбит/с


Специальная плёнка

От 18\$ за диск


CD 0.7 Gbyte



DVD 4.7 Gbyte



Blu-ray Disc 25 Gbyte



# HVD - голографические оптические диски

Hitachi Maxell

ROM, (RW)

2007г: 300 Гбайт, 20 Мбайт/с

2008г: 800 Гбайт, 80 Мбайт/с

2010г: до 1,6 Тбайт!

От 100\$ за диск

Стоимость дисковода от 15 000\$



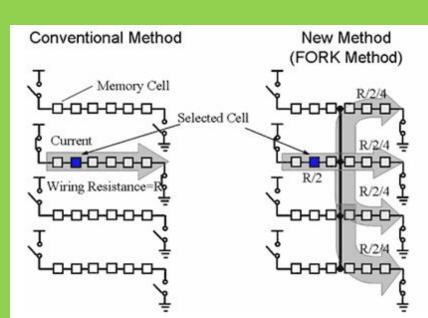
#### Flash

- Метал-нитридные микросхемы памяти
- Тотальное стирание блоков (flash!)
- Количество циклов перезаписи > 1 млн.
- MTBF > 1 000 000 часов?
- t<sub>раб</sub> от -40 до +80<sup>0</sup>C
- Скорость считывания 1..10 Мбайт/с



### Гибриды HDD+Flash

HSA, Hybrid Storage Alliance:
 Hitachi, Seagate, Fujitsu, Samsung, Toshiba


«Robson»:Intel

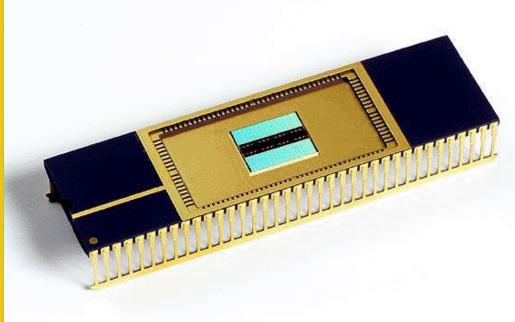


#### SSD-накопители

### Перспективные типы памяти

- MRAM, Magneto-resistive RAM
- FRAM, Ferroelectric RAM
- NRAM, Nanotube | Non-volatile RAM
- OUM, Ovonic Unified Memory
- PCM/PRAM




#### PRAM

## Phase Change Random Access Memory | Память на основе фазовых состояний

#### Принцип действия РСМ

Технология, известная под аббревиатурами PRAM и PCM, предполагает использование халькогенида — прозрачной субстанции, состоящей из серы, селена и теллура. На этой упрощенной диаграмме показан участок микросхемы PRAM, где с помощью электрического тока состояние халькогенидной подложки было измененено с кристаллического на аморфное





### Контрольные вопросы по теме

- Для чего память ПК строится по многоуровневому принципу?
- Что такое кэш-память?
- Микросхемы ОЗУ какого типа (SRAM или DRAM):
  - Быстрее?
  - Дороже?
  - Потребляют меньше энергии?
- Каков объём одностороннего однослойного DVD-диска?