Модуль 5 УЭ-6

Фундаментальное решение

Фундаментальное решение уравнения Лапласа

Теорема 6.1. Пусть

$$E(x,\xi) = \begin{cases} \frac{1}{n-2} |\xi - x|^{2-n}, & n > 2, \\ -\log|\xi - x|, & n = 2, \end{cases}$$
 (6.1)

где $|\xi - x|$ - расстояние между точками x и ξ . Тогда при $\xi \neq y$ функция $E(x,\xi)$ является решением уравнения Лапласа как по x, так и по ξ Доказательство. Действительно, при $x \neq \xi$ из (6.1) имеем

$$\frac{\partial^2 E}{\partial x_i^2} = -|\xi - x|^{-n} + n|\xi - x|^{-n-2}(\xi_i - x_i)^2$$

А тогда

$$\Delta E = -n|\xi - x|^{-n} + n|\xi - x|^{-n-2} \sum_{i=1}^{n} (\xi_i - x_i)^2 = 0$$

Определение 6.1. Функция E(x, y) называется элементарным или фундаментальным решением уравнения Лапласа.

Для действительных функций $u_i(x), i=1, \mathbb{N}$, n непрерывных вместе со своими производными первого порядка в замкнутой области $G \cup \Gamma$ с гладкой границей Γ имеет место формула Гаусса-Остроградского

$$\int_{\Gamma} \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} dv = \int_{\Gamma} \sum_{i=1}^{n} u_{i}(y) n_{i}(y) ds_{y}$$
(6.2)

где dv - элемент объёма, а $\overset{\bowtie}{n}=(n_1, \mathbb{N}, n_n)$ - внешняя нормаль к Γ в точке $y\in \Gamma$. Поскольку для любых функций $u,v\in C^2(G)$ справедливо

$$v\Delta u - u\Delta v = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(v \frac{\partial u}{\partial x_{i}} - u \frac{\partial v}{\partial x_{i}} \right)$$

то, применяя формулу (6.2), получим

$$\int_{\Gamma} (v\Delta u - u\Delta v)dv = \int_{\Gamma} \left(v(y) \frac{\partial u}{\partial n_y} - u(y) \frac{\partial v}{\partial n_y} \right) ds_y$$
 (6.3)

Теорема 6.2. Для любой функции $u(x) \in C^2(G)$ справедлива формула Грина

$$u(x) = \frac{1}{\omega_n} \int_{\Gamma} \left(E(x, y) \frac{\partial u(y)}{\partial n_y} - u(y) \frac{\partial E(x, y)}{\partial n_y} \right) ds_y - \frac{1}{\omega_n} \int_{G} E(x, y) \Delta u(y) dv$$
 (6.4)

 $\Gamma \partial e \ E(x,y)$ - фундаментальное решение уравнения Лапласа,

$$\omega_n = 2\pi^{n/2} \Gamma(n/2)$$

- площадь единичной сферы в R^n , а Γ - гамма-функция Эйлера.

Доказательство. Вырежем из области G шар $|y-x| \le \varepsilon$ радиуса ε с центром в точке $x \in G$ и для оставшейся части G_{ε} области G применим формулу (6.3), в которой

$$v(y) = E(x, y):$$

$$\int_{\Gamma} \left(E(x, y) \frac{\partial u(y)}{\partial n_{y}} - u(y) \frac{\partial E(x, y)}{\partial n_{y}} \right) ds_{y} - \int_{G_{\varepsilon}} E(x, y) \Delta u(y) dv =$$

$$= \int_{|y-x|=\varepsilon} \left(E(x, y) \frac{\partial u(y)}{\partial n_{y}} - u(y) \frac{\partial E(x, y)}{\partial n_{y}} \right) ds_{y} = \int_{|y-x|=\varepsilon} E(x, y) \frac{\partial u(y)}{\partial n_{y}} ds_{y} - u(x) \int_{|y-x|=\varepsilon} \frac{\partial E(x, y)}{\partial n_{y}} ds_{y} - u(x) \int_{|y-x|=\varepsilon} \frac{\partial E(x, y)}{\partial n_{y}} ds_{y} - u(x) \int_{|y-x|=\varepsilon} \frac{\partial E(x, y)}{\partial n_{y}} ds_{y} ds_{y}.$$

$$(6.5)$$

Учитывая то обстоятельство, что на сфере $|y-x|=\varepsilon$

$$E(x,y) = \begin{cases} \varepsilon^{2-n}/(n-2), & n > 2, \\ -\log \varepsilon, & n = 2, \end{cases} \frac{\partial E(x,y)}{\partial n_y} = \begin{cases} -1/\varepsilon^{n-1}, & n > 2, \\ -1/\varepsilon, & n = 2. \end{cases}$$

$$\lim_{\varepsilon \to 0} \int_{|x-y|=\varepsilon} (u(y) - u(x)) \frac{\partial E(x,y)}{\partial n_y} ds_y = 0, \quad \int_{|y-x|=\varepsilon} \varepsilon^{1-n} ds_y = \omega_n.$$

из формулы (6.5) в пределе при $\varepsilon \to 0$ получаем интегральное представление (6.4). Если бы нам из каких либо соображений были известны значения u, Δu и $\partial u/\partial n$, входящие в формулу Грина (6.4):

$$\Delta u = -\omega_n \rho, \quad u|_{\Gamma} = f_1, \quad \frac{\partial u}{\partial n}|_{\Gamma} = f_2$$

то из формулы Грина мы бы получили явное представление для функции u:

$$u(x) = \frac{1}{\omega_n} \int_{\Gamma} \left(E(x, y) f_2(y) - f_1(y) \frac{\partial E(x, y)}{\partial n_y} \right) ds_y + \int_{G} E(x, y) \rho(y) dv_y$$
 (6.6)

Но поскольку функции f_1 и f_2 не могут быть произвольно заданными на Γ , то формула (6.6) не даёт возможности решать задачи Дирихле и Неймана для уравнения Пуассона. Однако при помощи интегралов, входящих в (6.6), удаётся при некоторых ограничениях такие решения найти.

Определение 6.2. Интегралы

$$\int_{\Gamma} f_2(y) E(x, y) ds_y, \quad \int_{\Gamma} f_1(y) \frac{\partial E(x, y)}{\partial n_y} ds_y, \quad \int_{G} \rho(y) E(x, y) dv_y$$

называется соответственно **потенциалами простого и двойного слоя и объёмным (ньютоновым) потенциалом.** Функции f_1, f_2 и ρ называются плотностями этих потенциалов.

Модуль 5 УЭ-7

Функция Грина

Функция Грина задачи Дирихле для уравнения Лапласа

Определение 7.1. Функцией Грина задачи Дирихле для уравнения Лапласа в области G называется функция $H(x,\xi)$ двух точек $x,\xi \in \overline{G}$, обладающая свойствами:

1)
$$H(x,\xi) = E(x,\xi) + h(x,\xi)$$
 (7.1)

где $E(x,\xi)$ - элементарное решение уравнения Лапласа, а $h(x,\xi)$ - гармоническая функция как по $x \in G$, так и по $\xi \in G$;

2)
$$H(x,\xi) = 0$$
 (7.2)

когда точка x или ξ лежит на границе Γ области G.

Отметим, что $H(x,\xi) \ge 0$ всюду в области G. Действительно, если G_δ часть области G , лежащая вне шара $|y-\xi| \le \delta, \xi \in G$, достаточно малого радиуса δ , и поскольку

$$\lim_{x\to\xi}H(x,y)=+\infty,$$

То при $\delta << 1$ $H(x,\xi) \ge 0$ на границе области G_δ и внутри шара $|y-\xi| \le \delta$. Тогда в силу принципа экстремума $H(x,\xi) \ge 0$ как в G_δ , так и всюду в \overline{G} .

Теорема 7.1 Функция Грина H(x,y) симметрична относительно точек x и y Доказательство. Пусть $K(x,\delta)$ шар радиуса $\delta>0$ с центром в точке $x\in G$ и $G_{\delta}=G\setminus\{K(x,\delta)\cup K(y,\delta)\}$ при $\delta<<1$. Применяя теперь формулу (6.3) в области G_{δ} для гармонических функций u(z)=H(z,x) и v(z)=H(z,y), будем иметь

$$\int_{\Gamma} \left(H(z, y) \frac{\partial H(z, x)}{\partial n_{z}} - H(z, x) \frac{\partial H(z, y)}{\partial n_{z}} \right) ds_{z} =$$

$$= \left\{ \int_{\Gamma_{z}} + \int_{\Gamma_{y}} \left\{ H(z, y) \frac{\partial H(z, x)}{\partial n_{z}} - H(z, x) \frac{\partial H(z, y)}{\partial n_{z}} \right\} ds_{z}, \right\}$$

где n_z - внешняя нормаль в точке z на Γ и на сферах Γ_x и Γ_y являющихся границами шаров $K(x,\delta)$ и $K(y,\delta)$. Но так как при $z \in \Gamma$ H(z,x) = H(z,y) = 0, то формулы примут вид

$$-\int_{\Gamma} \left(H(z,y) \frac{\partial H(z,x)}{\partial n_{z}} - H(z,x) \frac{\partial H(z,y)}{\partial n_{z}} \right) ds_{z} =$$

$$= \int_{\Gamma_{y}} \left(H(z,y) \frac{\partial H(z,x)}{\partial n_{z}} - H(z,x) \frac{\partial H(z,y)}{\partial n_{z}} \right) ds_{z}.$$

Повторяя теперь при $\delta \to 0$ вывод, аналогичный уже проведённому при получении формулы (6.4), получим H(x,y) = H(y,x).

Замечание. Вид формулы (6.4) не изменяется при прибавлении к функции E(x,y) произвольной гармонической функции f(x,y) по x и y. Поэтому в случае, когда функция Грина H(x,y) известна, формула (6.4) принимает вид

$$u(x) = -\frac{1}{w_n} \int_{\Gamma} u(y) \frac{\partial H(x, y)}{\partial n_y} dv - \frac{1}{w_n} \int_{G} H(x, y) \Delta u(y) dv$$
 (7.3)

В дальнейшем мы покажем, что (6.4) можно использовать для нахождения решения задачи Дирихле для уравнения Пуассона.

7.1. Функция Грина для шара

Теорема 7.2 Функция Грина задачи Дирихле для шара |x < 1| имеет вид

$$H(x,\xi) = E(x,\xi) - E\left(|x|\xi, \frac{x}{|x|}\right)$$
 (7.4)

Доказательство. Действительно, так как

$$\left| |x|\xi - \frac{x}{|x|} \right| = \left| |x|^2 |\xi|^2 - 2x\xi + 1 \right|^{1/2} = \left| |\xi|x - \frac{\xi}{|\xi|} \right| = |\xi| x - \frac{\xi}{|\xi|^2} = |x| |\xi - \frac{x}{|x|^2} |$$
(7.5)

то функция $h(x,\xi) = -E\left(|x|\xi,\frac{x}{|x|}\right)$ при |x|<1, $|\xi|<1$ является гармонической как по x , так и по ξ . А при $|\xi|=1$ имеем

$$|\xi - x| = |x|^2 - 2x\xi + 1^{1/2} = |x|\xi - \frac{x}{|x|} = |\xi|x - \frac{\xi}{|\xi|}$$
 (7.6)

Следовательно, представленная формулой (7.4) функция $H(x,\xi)$ удовлетворяет всем требованиям, предъявляемым к функциям Грина.

Замечание. Так как при $|\xi| = 1$ в силу (7.6)

$$\frac{\partial H(x,\xi)}{\partial n_{\xi}} = -\sum_{i=1}^{n} \left\{ \frac{\xi_{i}(\xi_{i} - x_{i})}{\left|\xi - x\right|^{n}} - \left|n\right| \frac{\xi_{i}\left(\left|x\right|\xi_{i} - \frac{x_{i}}{\left|x\right|}\right)}{\left|x\right|\xi - \frac{x^{n}}{\left|x\right|}} \right\} = -\frac{1 - \left|x\right|^{2}}{\left|\xi - x\right|^{n}}$$

то из (7.3) получаем доказанную ранее формулу Пуассона

$$u(x) = \frac{1}{w_n} \int_{|\xi|=1}^{1-|x|^2} \frac{1-|x|^2}{|\xi-x|^n} \varphi(\xi) ds_{\xi}$$
 (7.7)

дающую решение задачи Дирихле для уравнения Лапласа в шаре:

$$\Delta u(x) = 0, |x| < 1; u|_{\Gamma} = \varphi(\xi), |\xi| = 1.$$

7.2. функция Грина для полупространства

Пусть область G совпадает с полупространством $x_n > 0$ и искомое решение задачи Дирихле ограничено. Пусть точки $x, y \in G$, а $y' = (y_1, \mathbb{N}, y_{n-1}, -y_n)$ - точка, симметричная точке y относительно плоскости $y_n = 0$. Тогда функция

$$H(x, y) = E(x, y) - E(x, y')$$
 (7.8)

является искомой функцией Грина для полупространства, так как функция h(x,y) = -E(x,y') при $x_n > 0, y_n > 0$ является гармонической как по x, так и по y и кроме того H(x,y) = 0 при $y_n = 0$.

Если гармоническая функция u(x) удовлетворяет при $x_n > 0$ условиям

$$|u(x)| \le \frac{A}{|x|^{\alpha}}, \quad \left|\frac{\partial u}{\partial x_i}\right| \le \frac{A}{|x|^{1+\alpha}}, \quad i = 1, \mathbb{Z}, n$$

где A и α - положительные постоянные, то из (6.4) будем иметь

$$u(x) = \frac{-1}{w_n} \int_{v_n=0} \left(E(x, y) \frac{\partial u(y)}{\partial y_n} - u(y) \frac{\partial E(x, y)}{\partial y_n} \right) dy_1 \mathbb{X} dy_{n-1}$$
 (7.9)

Если же повторить вывод формулы (6.4) для пары функций u(x) и $E(x,\xi')$ и учесть, что на плоскости $y_n = 0$ справедливы равенства

$$E(x, y) = E(x, y'), \quad \frac{\partial E(x, y')}{\partial n_y} = -\frac{\partial E(x, y')}{\partial n_y} = \frac{\partial E(x, y)}{\partial n_y}$$

то мы будем иметь соответственно

$$\frac{1}{w_n} \int_{y_n} \left(E(x, y) \frac{\partial u(y)}{\partial y_n} + u(y) \frac{\partial E(x, y)}{\partial y_n} \right) dy_1 \, \mathbb{I} \quad dy_{n-1} = 0$$
 (7.10)

Принимая во внимание теперь, что при $y_n = 0$

$$\frac{\partial E(x, y)}{\partial y_n} = x_n \left[\sum_{i=1}^{n-1} (x_i - y_i)^2 + x_n^2 \right]^{-n/2}$$

находим после сложения (вычитания - ?) формул (7.9) и (7.10) представление для решения задачи Дирихле с краевым условием

$$\lim_{x \to y} u(x) = \varphi(y_1, \mathbb{X}, y_{n-1}), \quad x > 0, \quad y_n = 0$$
 (7.11)

в полупространстве $x_n > 0$ в виде

$$u(x) = \frac{2x_n}{w_n} \int_{y_n=0}^{\infty} \varphi(y_1, \mathbb{X}, y_{n-1}) \left[\sum_{i=1}^{n-1} (x_i - y_i)^2 + x_n^2 \right]^{-n/2} dy_1 \mathbb{X} dy_{n-1}$$
 (7.12)

носящее также название формулы Пуассона.