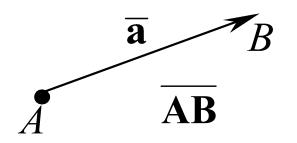
Векторная алгебра

- Разложение вектора по базису
- Системы координат
- <u>Декартова прямоугольная система</u> координат
- Скалярное произведение векторов
- Свойства скалярного произведения
- Векторное произведение
- Смешанное произведение
- Свойства смешанного произведения

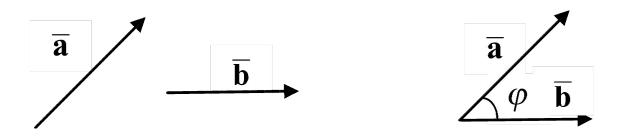
Определение. **Вектором** или по-другому **свободным вектором** называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая — за конец).



Расстояние от начала вектора до его конца называется $\frac{\partial}{\partial a}$ (*модулем*) вектора. $\left| \frac{\partial}{\partial a} \right| \left| \frac{\partial}{\partial a} \right|$

Вектор, длина которого равна единице, называется единичным вектором или ортом.

Вектор, начало и конец которого совпадают, называется *нулевым* и обозначается $\overline{\mathbf{0}}$. Нулевой вектор не имеет определенного направления и имеет длину, равную нулю.



Под *углом* между векторами $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$ будем понимать угол, величина которого не превышает 180^{0} .

Два вектора $\overline{\bf a}$ и $\overline{\bf b}$ называются *ортогональными*, если угол между ними равен 90^{0} . $\overline{\bf a} \perp \overline{\bf b}$

Два вектора $\overline{\mathbf{a}}$ и \mathbf{b} называются *коллинеарными*, если они лежат на одной или параллельных прямых. $\overline{\mathbf{a}} \ \overline{\mathbf{b}}$

Три вектора, лежащие в одной или в параллельных плоскостях, называются компланарными.

Два вектора называются *равными*, если они сонаправлены и имеют одинаковую длину. Все нулевые векторы считаются равными.

Определение. Произведением вектора $\overline{\bf a}$ на число $\alpha \neq 0$ называется вектор, длина которого $\alpha \cdot |\overline{\bf a}|$, а направление совпадает с направлением вектора $\overline{\bf a}$ при $\alpha > 0$ и противоположно ему при $\alpha < 0$. Если $\overline{\bf a} = \overline{\bf 0}$ или $\alpha = 0$, то их произведение полагают равным $\overline{\bf 0}$.

$$\frac{\overline{a}}{\overline{a}} = \frac{2\overline{a}}{-2\overline{a}}$$

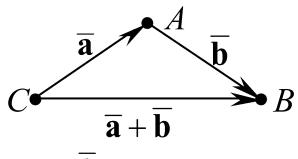
$$(-1)\overline{\mathbf{a}} = -\overline{\mathbf{a}}$$
 противоположный вектору $\overline{\mathbf{a}}$

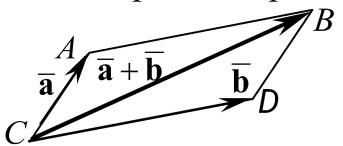
Лемма 2.1 (критерий коллинеарности векторов). Два ненулевых вектора $\overline{\bf a}$ и $\overline{\bf b}$ коллинеарны тогда и только тогда, когда $\overline{\bf a} = \alpha \cdot \overline{\bf b}$ для некоторого числа $\alpha \neq 0$

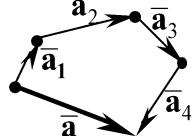
Определение. Суммой векторов \overline{a} и \overline{b} называется вектор, соединяющий начало вектора \overline{a} с концом вектора \overline{b} , отложенного от конца вектора \overline{a}

Правило треугольника

Правило параллелограмма

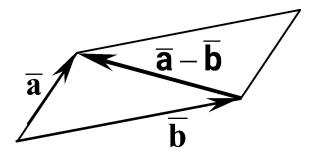






$$\overline{\mathbf{a}} = \overline{\mathbf{a}}_1 + \overline{\mathbf{a}}_2 + \overline{\mathbf{a}}_3 + \overline{\mathbf{a}}_4$$

$$\overline{\mathbf{a}} + (-\overline{\mathbf{b}}) = \overline{\mathbf{a}} - \overline{\mathbf{b}}$$
разность векторов



Определение. Пусть даны векторы $\bar{a}_1, \ \bar{a}_2, \ \mathbb{Z}$, \bar{a}_k . Тогда вектор $\bar{\mathbf{b}} = \alpha_1 \cdot \bar{a}_1 + \alpha_2 \cdot \bar{a}_2 + \mathbb{Z} + \alpha_k \cdot \bar{a}_k$ называют **пинейной комбинацией** векторов $\bar{a}_1, \ \bar{a}_2, \ \mathbb{Z}$, \bar{a}_k . При этом говорят, что вектор $\bar{\mathbf{b}}$ **пинейно выражаемся** через вектора $\bar{a}_1, \ \bar{a}_2, \ \mathbb{Z}$, \bar{a}_k , или другими словами **разложен по векторам** $\bar{a}_1, \ \bar{a}_2, \ \mathbb{Z}$, \bar{a}_k .

Пемма 2.2 (критерий компланарности векторов). Три ненулевых вектора $\bar{\mathbf{a}}$, $\bar{\mathbf{b}}$ и $\bar{\mathbf{c}}$ компланарны тогда и только тогда, когда один из них линейно выражается через другие (например, $\bar{\mathbf{c}} = \lambda_1 \bar{\mathbf{a}} + \lambda_2 \bar{\mathbf{b}}$).

Свойства линейных операций над векторами

1.
$$\overline{\mathbf{a}} + \overline{\mathbf{b}} = \overline{\mathbf{b}} + \overline{\mathbf{a}}$$

2.
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$$

3.
$$\overline{a} + \overline{0} = \overline{a}$$

$$4. \ \overline{a} + (-\overline{a}) = \overline{0}$$

5.
$$\alpha(\beta \overline{\mathbf{a}}) = (\alpha\beta)\overline{\mathbf{a}}$$

6.
$$(\alpha + \beta)\overline{\mathbf{a}} = \alpha \overline{\mathbf{a}} + \beta \overline{\mathbf{a}}$$

7.
$$\alpha(\overline{\mathbf{a}} + \overline{\mathbf{b}}) = \alpha \overline{\mathbf{a}} + \alpha \overline{\mathbf{b}}$$

8.
$$1\overline{\mathbf{a}} = \overline{\mathbf{a}}$$

Определение. Говорят, что векторы \overline{a}_1 , \overline{a}_2 , \mathbb{S}_1 , \overline{a}_k линейно зависимы, если существуют числа α_1 , α_2 , \mathbb{S}_1 , α_k , не равные нулю одновременно, такие, что линейная комбинация $\alpha_1 \cdot \overline{a}_1 + \alpha_2 \cdot \overline{a}_2 + \mathbb{S}_1 + \alpha_k \cdot \overline{a}_k = 0$.

Если же равенство $\alpha_1 \cdot \overline{a}_1 + \alpha_2 \cdot \overline{a}_2 + \mathbb{Z} + \alpha_k \cdot \overline{a}_k = 0$ возможно только при условии $\alpha_1 = \alpha_2 = \mathbb{Z} = \alpha_k = 0$, то векторы \overline{a}_1 , \overline{a}_2 , \mathbb{Z} , \mathbb{Z} , называют линейно независимыми.

Пемма 3.1. Векторы \bar{a}_1 , \bar{a}_2 , \mathbb{Z} , \bar{a}_k линейно зависимы тогда и только тогда, когда хотя бы один из них линейно выражается через оставшиеся.

Пемма 3.2 (критерий линейной зависимости двух векторов). Два ненулевых вектора $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$ линейно зависимы тогда и только тогда, когда они коллинеарны.

Пемма 3.3 (критерий линейной зависимости трёх векторов). Три ненулевых вектора $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$ и $\overline{\mathbf{c}}$ линейно зависимы тогда и только тогда, когда они компланарны.

Определение. **Базисом** некоторой системы векторов называется любая максимальная линейно независимая подсистема этой системы векторов.

Иначе говоря \bar{e}_1 , \bar{e}_2 , \mathbb{Z} , \bar{e}_n – базис, если

- 1) \bar{e}_{1} , \bar{e}_{2} , \mathbb{Z}_{n} , \bar{e}_{n} линейно независимы;
- 2) \bar{e}_1 , \bar{e}_2 , \mathbb{Z} , \bar{e}_n , \bar{a} линейно зависимы для любого вектора \bar{a} из данной системы векторов.

Базис можно выбрать не единственным образом.

Например, если \overline{e}_1 , \overline{e}_2 , \mathbb{Z} , \overline{e}_n – базис, то при $\alpha \neq 0$ $\alpha \overline{e}_1$, $\alpha \overline{e}_2$, \mathbb{Z} , $\alpha \overline{e}_n$ – также базис.

Теорема 3.4. Любые два базиса данной системы векторов состоят из одного и того же числа векторов.

Теорема 3.5. 1) Базисом на плоскости являются любые два неколлинеарных вектора.

2) Базисом в пространстве являются любые три некомпланарных вектора.

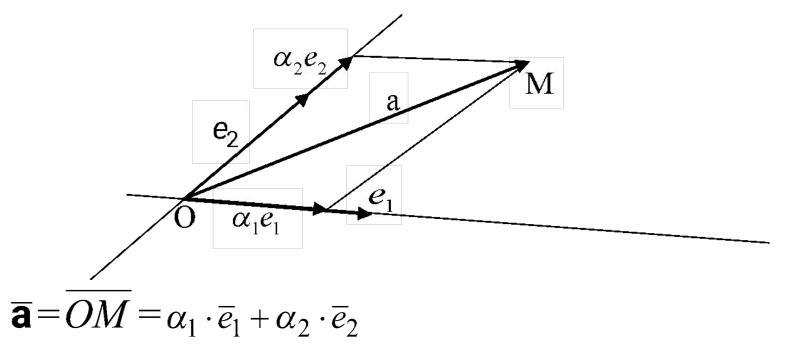
Теорема 3.6 (о базисе). Каждый вектор линейно выражается через базис, причем единственным образом.

 $\overline{e}_1,\ \overline{e}_2,\ \mathbb{Z}$, \overline{e}_n – базис, $\overline{\mathbf{a}}$ – произвольный вектор \Rightarrow $\overline{a}=\alpha_1\cdot\overline{e}_1+\alpha_2\cdot\overline{e}_2+\mathbb{Z}$ $+\alpha_n\cdot\overline{e}_n$

При этом α_1 , α_2 , \mathbb{Z} , α_n называют *координатами* вектора $\overline{\mathbf{a}}$ в базисе \overline{e}_1 , \overline{e}_2 , \mathbb{Z} , \overline{e}_n

Зафиксируем произвольную точку О в пространстве и выберем некоторый базис.

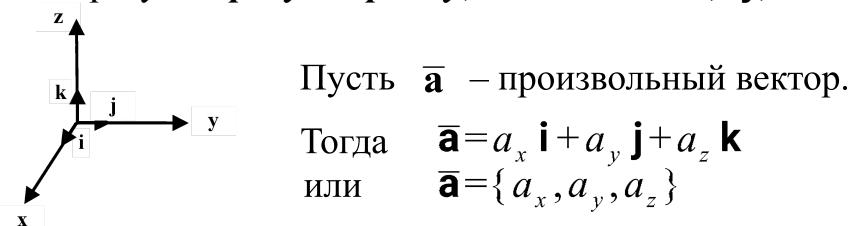
Совокупность этой точки и этого базиса называется системой координат.



 α_1 и α_2 – координаты вектора $\overline{\bf a}$ в этом базисе Также говорят, что α_1 и α_2 – координаты точки M.

Декартовой прямоугольной системой координат в пространстве называют систему координат, базисом в которой являются единичные векторы, попарно ортогональные друг с другом.

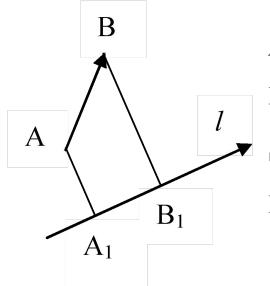
Правая система координат, в которой векторы базиса образуют *правую тройку*, обозначают **i**, **j**, **k**:



Замечание. Иногда в качестве базиса берут *левую* **тройку** векторов (**i**, **j**, -**k**). Тогда такую систему координат называют **левой**.

Пусть в пространстве задана ось l, то есть направленная прямая, $\overline{\bf AB}$ — произвольный вектор.

Обозначим через A_1 и B_1 — проекции на ось l точек A и B соответственно.



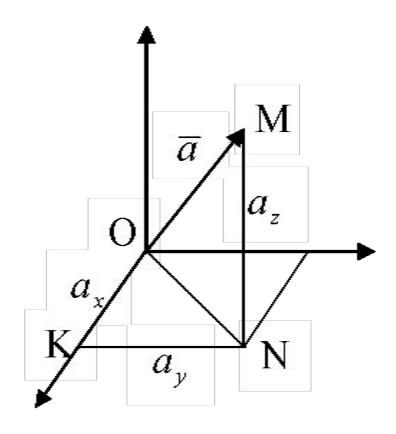
Проекцией вектора AB на ось l называется положительное число $|\overline{A_1B_1}|$, если вектор $\overline{A_1B_1}$ и ось l одинаково направлены, и отрицательное число $-|\overline{A_1B_1}|$, если вектор $\overline{A_1B_1}$ и ось l противоположно направлены.

Если точки A_1 и B_1 совпадают, то проекция вектора \overline{AB} равна 0. $\frac{1}{100}$

Свойства проекций:

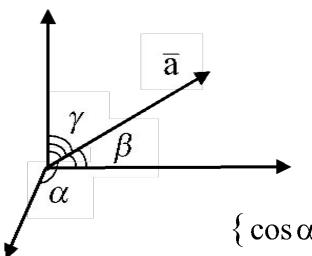
- **1.** Проекция вектора $\overline{\bf a}$ на ось l равна произведению длины вектора $\overline{\bf a}$ на косинус угла φ между вектором и осью: $\pi p_l \overline{\bf a} = |\overline{\bf a}| \cdot \cos \varphi$.
- **2.** Проекция суммы нескольких векторов на ось l равна сумме их проекций на эту ось.
- **3.** При умножении вектора $\overline{\bf a}$ на число λ его проекция на ось l также умножается на это число: $\operatorname{пр}_l(\lambda \cdot \overline{\bf a}) = \lambda \cdot \operatorname{пр}_l \overline{\bf a}$.

$$\overline{\mathbf{a}} = a_x \, \mathbf{i} + a_y \, \mathbf{j} + a_z \, \mathbf{k}$$
 координата a_x — это проекция вектора $\overline{\mathbf{a}}$ на ось Ox координата a_y — проекция вектора $\overline{\mathbf{a}}$ на ось Oy координата a_z — проекция вектора $\overline{\mathbf{a}}$ на ось Oz .



$$|\overline{\mathbf{a}}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

 $\overline{\mathbf{a}} = \{a_x, a_y, a_z\}$ Рассмотрим вектор $\{\cos\alpha, \cos\beta, \cos\gamma\}$.



По свойству 1 проекций

$$a_x = \pi \mathbf{p}_{Ox} \overline{\mathbf{a}} = |\overline{a}| \cdot \cos \alpha$$
,

$$a_{v} = \pi p_{Oy} \overline{\mathbf{a}} = |\overline{a}| \cdot \cos \beta$$
,

$$a_z = \prod p_{Oz} \overline{\mathbf{a}} = |\overline{a}| \cdot \cos \gamma \implies$$

$$\{\cos\alpha, \cos\beta, \cos\gamma\} = \frac{a_x}{|\overline{a}|} \mathbf{i} + \frac{a_y}{|\overline{a}|} \mathbf{j} + \frac{a_z}{|\overline{a}|} \mathbf{k} = \frac{1}{|\overline{a}|} \overline{\mathbf{a}},$$

то есть вектор $\{\cos\alpha\,,\,\cos\beta\,,\,\cos\gamma\,\}$ — единичный и направлен также, как и $\overline{\bf a}$. Этот вектор называют *ортом вектора* $\overline{\bf a}$.

 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — *направляющие косинусы* вектора $\overline{\bf a}$ $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ — *свойство* направляющих косинусов.

Пусть
$$\overline{\mathbf{a}} = \{a_x, a_y, a_z\}, \overline{\mathbf{b}} = \{b_x, b_y, b_z\}.$$

$$\overline{\mathbf{a}} + \overline{\mathbf{b}} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) + (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}) =$$

$$= (a_x + b_x) \mathbf{i} + (a_y + b_y) \mathbf{j} + (a_z + b_z) \mathbf{k} =$$

$$= \{a_x + b_x, a_y + b_y, a_z + b_z\}$$

$$\alpha \cdot \overline{\mathbf{a}} = \alpha \cdot (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) =$$

$$= (\alpha \cdot a_x) \mathbf{i} + (\alpha \cdot a_y) \mathbf{j} + (\alpha \cdot a_z) \mathbf{k} =$$

$$= \{\alpha \cdot a_x, \alpha \cdot a_y, \alpha \cdot a_z\}$$

Теорема 4.1. Если
$$\overline{\mathbf{a}} = \{a_x, a_y, a_z\}, \ \overline{\mathbf{b}} = \{b_x, b_y, b_z\}, \$$
то 1) $\overline{\mathbf{a}} + \overline{\mathbf{b}} = \{a_x + b_x, a_y + b_y, a_z + b_z\},$ 2) $\alpha \cdot \overline{\mathbf{a}} = \{\alpha \cdot a_x, \alpha \cdot a_y, \alpha \cdot a_z\}.$

Пемма 4.2 (критерий коллинеарности векторов в координатной форме). Два ненулевых вектора **ā** и **b** коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Пример

$$\overline{\mathbf{a}} = \{2, 4, 0\}$$
 $2 = \alpha \cdot 1$
 $\overline{\mathbf{b}} = \{1, 2, 0\}$ $4 = \alpha \cdot 2$
 $0 = \alpha \cdot 0$

 $\Rightarrow \alpha = 2 \Rightarrow$ векторы $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$ коллинеарны

$$a_x = \alpha \cdot b_x, \ a_y = \alpha \cdot b_x, \ a_z = \alpha \cdot b_x \Rightarrow$$

$$\alpha = \frac{a_x}{b_x}, \ \alpha = \frac{a_y}{b_y}, \ \alpha = \frac{a_z}{b_z} \Rightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$$

 $A(x_1, y_1, z_1), B(x_2, y_2, z_2).$ Найдем координаты \overline{AB} .



Вектор
$$\overline{\mathbf{A}\mathbf{B}} = \overline{\mathbf{O}\mathbf{B}} - \overline{\mathbf{O}\mathbf{A}}$$
.

Так как
$$\mathbf{OB} = \{x_2, y_2, z_2\},\ \overline{\mathbf{OA}} = \{x_1, y_1, z_1\},\$$
то $\overline{\mathbf{AB}} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}.$

Пемма 4.3. Если **A** имеет координаты (x_1, y_1, z_1) , точка **B** – координаты (x_2, y_2, z_2) , то вектор $\overline{\mathbf{AB}}$ имеет координаты $\{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$.

Разделим отрезок **AB** в отношении λ , то есть на прямой, проходящей через точки **A** и **B**, найдём такую точку **M**, что $\overline{AM} = \lambda \overline{MB}$.

1)
$$\lambda = 1/2$$
, $\overline{AM} = \frac{1}{2}\overline{MB}$. A 1 M 2 B

2) $\lambda = -2$, $\overline{AM} = -2\overline{MB}$. A B M

3)
$$\lambda = -1$$
, то есть $\overline{AM} = -\overline{MB}$ — невозможно

- $\lambda > 0 \implies \overline{AM}$ и \overline{MB} одинаково направлены \implies точка **M** лежит внутри отрезка **AB**
- $\lambda < 0 \Rightarrow \overline{AM}$ и \overline{MB} противоположно направлены \Rightarrow точка **M** лежит вне отрезка **AB**

Пусть **A** (x_1, y_1, z_1) , **B** (x_2, y_2, z_2) . Обозначим координаты точки **M** (x, y, z).

Тогда
$$\overline{AM} = \{x-x_1, y-y_1, z-z_1\}, \overline{MB} = \{x_2-x, y_2-y, z_2-z\}.$$

Так как
$$\overline{AM} = \lambda \overline{MB}$$
, то $x - x_1 = \lambda (x_2 - x)$, $y - y_1 = \lambda (y_2 - y)$, $z - z_1 = \lambda (z_2 - z)$.

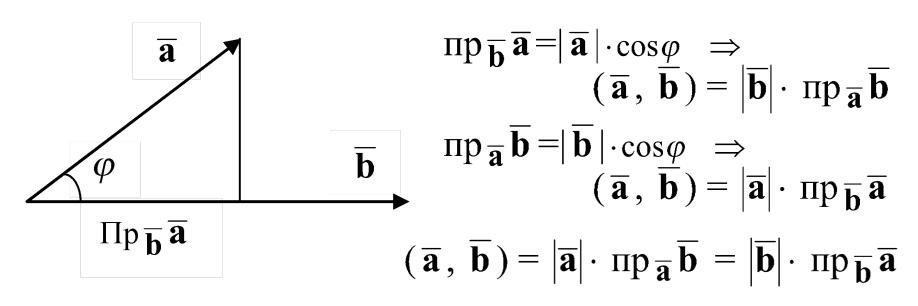
Откуда получаем, что

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \quad z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Определение. Скалярным произведением двух ненулевых векторов $\overline{\bf a}$ и $\overline{\bf b}$ называется число, равное произведению их длин на косинус угла между ними. Записывают $\overline{\bf a} \cdot \overline{\bf b}$ или $(\overline{\bf a}, \overline{\bf b})$.

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \cos \varphi$$

Если один из двух векторов является нулевым, их скалярное произведение считается равным нулю.



Свойства скалярного произведения

1.
$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = (\overline{\mathbf{b}}, \overline{\mathbf{a}})$$

2.
$$(\lambda \, \overline{\mathbf{a}}, \, \overline{\mathbf{b}}) = (\overline{\mathbf{a}}, \, \lambda \, \overline{\mathbf{b}}) = \lambda (\overline{\mathbf{a}}, \, \overline{\mathbf{b}})$$

3.
$$(\overline{a} + \overline{b}, \overline{c}) = (\overline{a}, \overline{c}) + (\overline{b}, \overline{c})$$

$$4. \quad (\overline{\mathbf{a}}, \ \overline{\mathbf{a}}) = |\overline{\mathbf{a}}|^2$$

Пемма 5.1 (критерий ортогональности векторов). Два ненулевых вектора ортогональны тогда и только тогда, когда их скалярное произведение равно нулю.

Пемма 5.2. Скалярное произведение векторов равно сумме произведений соответствующих координат:

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = a_x b_x + a_y b_y + a_z b_z.$$

Найдем угол между $\overline{\mathbf{a}} = \{a_x, a_y, a_z\}$ и $\overline{\mathbf{b}} = \{b_x, b_y, b_z\}$.

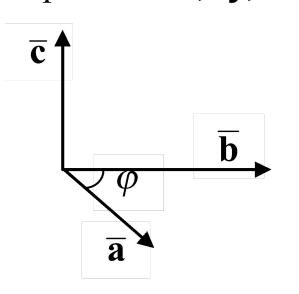
Имеем $(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \cos \varphi$, следовательно,

$$\cos \varphi = \frac{(\overline{\mathbf{a}}, \overline{\mathbf{b}})}{|\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overline{a}| \cdot |\overline{b}|}$$

Определение. Векторным произведением двух ненулевых векторов $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$ называется вектор $\overline{\mathbf{c}}$, для которого выполняются следующие условия:

1)
$$|\overline{\mathbf{c}}| = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \sin \varphi$$
,

- 2) $\overline{\mathbf{c}}$ ортогонален векторам $\overline{\mathbf{a}}$ и $\overline{\mathbf{b}}$,
- 3) $\overline{\mathbf{c}}$ направлен так, что тройка векторов $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$, $\overline{\mathbf{c}}$ правая, то есть ориентирована одинаково \mathbf{c} базисной тройкой \mathbf{i} , \mathbf{j} , \mathbf{k} .



 $[\overline{\mathbf{a}},\overline{\mathbf{b}}]$

Если хотя бы один из векторов нулевой, то полагают, что векторное произведение равно нулевому вектору.

$$[i, j] = k$$
 $[j, i] = -k$
 $[j, k] = i$ $[k, j] = -i$
 $[i, k] = -j$ $[k, i] = j$

Свойства векторного произведения

1.
$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = -[\overline{\mathbf{b}}, \overline{\mathbf{a}}]$$

2.
$$[\alpha \overline{\mathbf{a}}, \overline{\mathbf{b}}] = [\overline{\mathbf{a}}, \alpha \overline{\mathbf{b}}] = \alpha [\overline{\mathbf{a}}, \overline{\mathbf{b}}]$$

3.
$$[\overline{\mathbf{a}}_1 + \overline{\mathbf{a}}_2, \overline{\mathbf{b}}] = [\overline{\mathbf{a}}_1, \overline{\mathbf{b}}] + [\overline{\mathbf{a}}_2, \overline{\mathbf{b}}]$$

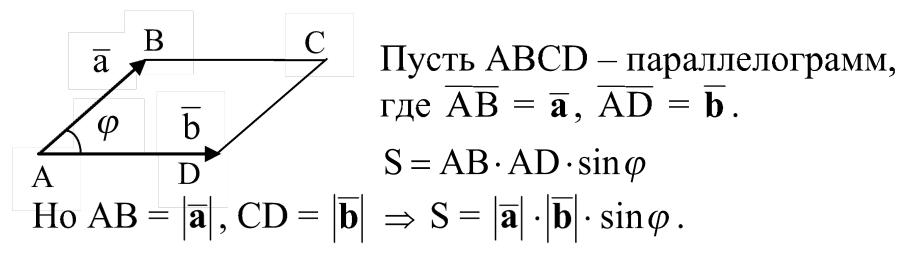
4.
$$\lceil \overline{\mathbf{a}}, \overline{\mathbf{a}} \rceil = \overline{0}$$

Пемма 6.1. Векторное произведение двух ненулевых векторов есть нулевой вектор тогда и только тогда, когда сомножители коллинеарны.

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = \mathbf{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Пемма 6.2. Пусть $\overline{\bf a}$ и $\overline{\bf b}$ — неколлинеарные вектора. Тогда площадь параллелограмма, построенного на этих векторах, равна модулю векторного произведения векторов $\overline{\bf a}$ и $\overline{\bf b}$: $S = |[\overline{\bf a}, \overline{\bf b}]|$.



Следствие 6.3. Пусть $\bar{\bf a}$ и $\bar{\bf b}$ — неколлинеарные вектора. Тогда площадь треугольника, построенного на этих векторах, равна половине модуля векторного произведения векторов $\bar{\bf a}$ и $\bar{\bf b}$: $S = \frac{1}{2} \cdot |[\bar{\bf a}, \bar{\bf b}]|$.

Определение. Смешанным произведением трёх векторов $\overline{\bf a}$, $\overline{\bf b}$ и $\overline{\bf c}$ называется число, получаемое следующим образом: векторное произведение $[\overline{\bf a}, \overline{\bf b}]$ умножаем скалярно на $\overline{\bf c}$:

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = ([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}).$$

Пемма 7.1. Пусть $\overline{\bf a}$, $\overline{\bf b}$ и $\overline{\bf c}$ – некомпланарные вектора. Тогда объём параллелепипеда, построенного на этих векторах, равен модулю смешанного произведения векторов $\overline{\bf a}$, $\overline{\bf b}$ и $\overline{\bf c}$:

$$V = |(\overline{a}, \overline{b}, \overline{c})|.$$

$$V = S_{och} \cdot H$$
 \overline{c} делогивие 7.2. Пусть \overline{a} , \overline{b} у \overline{c} вание параллененинеда вектора. Тогда объём пирамины, построенной на этих ректорах, рабен одной шестой модуля смещанного енный на векторах \overline{a} и \overline{b} . По лемме 6.2 $S_{och} = |[\overline{a}, \overline{b}]|$. Высота параллелепине \overline{d} \overline{a} \overline{b} \overline{b} \overline{c} \overline{c}

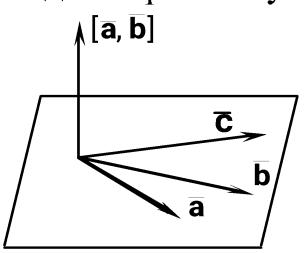
Свойства смешанного произведения

1.
$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = -([\overline{\mathbf{b}}, \overline{\mathbf{a}}], \overline{\mathbf{c}})$$

2.
$$([\overline{a}, \overline{b}], \overline{c}) = ([\overline{b}, \overline{c}], \overline{a}) = ([\overline{c}, \overline{a}], \overline{b})$$

3.
$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = (\overline{\mathbf{a}}, [\overline{\mathbf{b}}, \overline{\mathbf{c}}])$$

Пемма 7.3 (критерий компланарности векторов через смешанное произведение). Три ненулевых вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю.



Пусть
$$\overline{\mathbf{a}} = \{a_x, a_y, a_z\}, \overline{\mathbf{b}} = \{b_x, b_y, b_z\}, \overline{\mathbf{c}} = \{c_x, c_y, c_z\}.$$

$$\begin{bmatrix} \overline{\mathbf{a}}, \overline{\mathbf{b}} \end{bmatrix} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \mathbf{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \cdot c_x - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \cdot c_y + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \cdot c_z$$

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

Следствие 7.2. Пусть $\overline{\bf a}$, $\overline{\bf b}$ и $\overline{\bf c}$ — некомпланарные вектора. Тогда объём пирамиды, построенной на этих векторах, равен одной шестой модуля смешанного произведения векторов $\overline{\bf a}$, $\overline{\bf b}$ и $\overline{\bf c}$:

$$V = \frac{1}{6} \cdot |(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}})|.$$