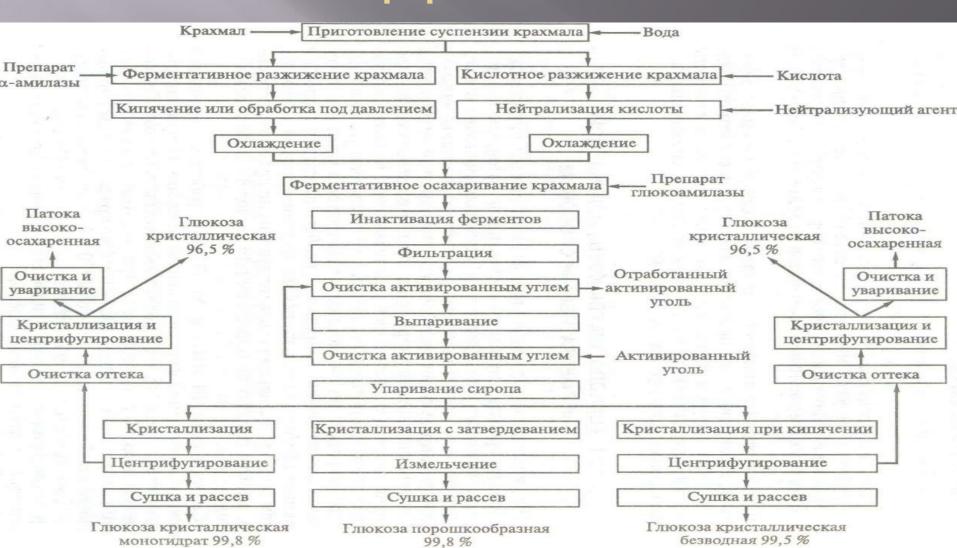
КУРСОВОЙ ПРОЕКТ НА ТЕМУ: «ФЕРМЕНТЫ И ИХ РОЛЬ ПРИ РЕАЛИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ САХАРНОГО И КРАХМАЛОПАТОЧНОГО ПРОИЗВОДСТВ. ЭМИССИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ»

Выполнила студентка группы 07-ТПМ-3


Манекина Я.Н.

Принял проф. Тужилкин В.И.

Технология глюкозы, получаемой ферментативным способом

При кислотном гидролизе крахмала практически нет возможности регулировать углеводный состав гидролизатов, так как кислота не проявляет специфичности к гликозидным связям в крахмале и поэтому происходит беспорядочное расщепление молекул крахмала, а продуктами гидролиза служат глюкоза и ее полимеры различной степени полимеризации. При этом для любой данной степени гидролиза состав углеводов аналогичен. Кислота катализирует также расщепление примесей крахмала, что ухудшает качество гидролизатов. Возможность варьирование углеводного состава и других физикохимических свойств продуктов гидролиза крахмала обеспечивается на основе ферментативного гидролиза путем подбора и селекции соответствующих продуцентов ферментов, а также разработки определённого технологического режима процесса.

Принципиальная технологическая схема производства глюкозы с применением ферментов

Применение ферментных препаратов для получения различных видов сахаристых продуктов из крахмала

В основе технологии всех видов сахаристых продуктов из крахмала лежит регулируемая декстринизация (разжижение) клейстеризованного крахмала. В качестве сырья обычно используют кукурузный или картофельный крахмал в виде водных суспензий концентрацией 35 — 38 %. Для разжижения крахмала применяют препараты с-амилаза. Их вносят в начальной стадии процесса поскольку клейстеризация концентрированной крахмальной суспензии возможна только при условии ее одновременного разжижения. Полная желатинизация крахмальных гранул происходит температуре выше 120 ° С. Поэтому при использовании препаратов саминаза низкой термостабильности, таких, как Амилосубтилин или БАН (его аналог), процесс разжижения проводят в две стадии, с промежуточной термообработкой. Амилосубтилин проявляет максимальную разжижающую способность при рН 6 — 6,2 в течение 40 мин при тёмпературе 84...86°C.

Схема разжижения крахмала Амилосубтилином включает:

- разжижение 35%-й крахмальной суспензии с рН 6 — 6,2 в течение 40 мин при температуре 85...88 °С и дозировке аамилазы 0,5 ед/г крахмала;
- термообработку в течение 1 3 мин при 120...130 °С с последующим охлаждением до 85 °С;
- разжижение в течение 90 мин при температуре 85 °C и дозировке фермента 0,2 ед/г крахмала.

Данные изменения содержания редуцирующих веществ в процессе гидролиза 30%-й суспензии Картофельного крахмала Амилопихетермом (0,45ед. амилазы/г, а . 105°C, x = 1,5 ч) показывают, что изменяя продолжительность процесса можно регулировать степень расщепления крахмала.

Продолжительность гидролиза 5 7 10 15 20 30 60

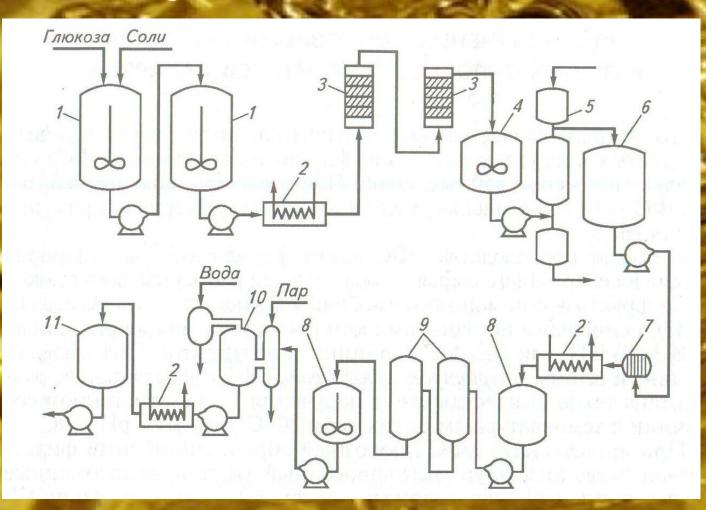
Содержание РВ, % СВ

5,8 6,7 10 12,7 14,7 25,2 28,9 30,2

Таблица 1. Характеристика гидролизатов крахмала, полученных с использованием препаратов Глюкаваморин и Амилоризин

Крахмал	Способ разжиже ния	РВ,% на стадии		Глюко за,%	Мальто за, %	Мальт отриоз	Декст рин,
		разжи жения	осахарив ания	Juy 70	Suy 70	a, %	0/0
Кукуру зный	КИСЛОТНЫ Й	26,1	68,6	37,6	42	9	11,4
	фермент ативный	27,2	70	35,8	48,1	11,3	4,6
Пшени чный	фермент ативный	24	66,8	41,2	35,7	10,9	12.2
Картоф ельный	фермент ативный	21,8	68,5	39,5	40,8	8,9	10,8

Таблица 2. Условия проведения гидролиза крахмала зернового сорго при получении паточных сиропов различного углеводного состава


Вариант гидролиза						Углеводный состав сиропов				
Ферментный препарат	Концентрация ферментного препарата	Длитель- ность, ч	Темпера- тура, °С	рН	ГЭ, %	Глюкоза, ГЭ, %	Мальтоза, ГЭ, %	Декстри- ны, ГЭ, %		
Амилосубтилин Г10Х	2 ед. АС/г	3,5	70	6,3-6,8	20 24	6 0	7 6	62 65		
β-Амилаза <i>В. роlутуха</i> Глюкаваморин Г20X	1,25 ед. β-амилазы/г 0,5 ед. ГлС/г	3 1,5	5560	6,5-7,2 4,7-5,6	30-34	6-9	7-6	63—65		
Амилосубтилин Г10X β-Амилаза <i>В. роlутуха</i> Глюкаваморин Г20X	1,65 ед. АС/г 0,75 ед. β-амилазы/г 0,65 ед. ГлС/г	3 5 2,5	70 5560 5060	6,3-6,8 6,5-7,2 4,7-5,6	40—42	21-22	21-22	56-58		
Амилосубтилин Г10X β-Амилаза <i>В. роlутуха</i> Глюкаваморин Г20X	1,65 ед. АС/г 1,25 ед. β-амилазы/г 1,35 ед. ГлС/г	3,2 16 1,2	70 5560 5060	6,3-6,8 6,5-7,2 4,7-5,6	50-52	29-31	24-25	47—48		
Амилосубтилин Г10X β-Амилаза <i>В. роlутуха</i> Глюкаваморин Г20X	1,65 ед. АС/г 1,25 ед. β-амилазы/г 1,35 ед. ГлС/г	3 16 4	70 5560 5060	6,3-6,8 6,5-7,2 4,7-5,6	60-65	37—45	15-27	34—40		

Получение глюкозно-фруктозных и ругих сиропов, заменителей сахарозы

По данным статистики, потребность в новых сахаристых продуктах, глюкозно-фруктозных сиропах (ГФС) составляет примерно 850 тыс. т/год. При этом основные потребители глюкознофруктозноых сиропов — безалкогольная, хлебопекарная и консервная промышленности.

В основе производства глюкозно-фруктозных сиропов лежит ферментативный гидролиз крахмалосодержащего сырья с последующей изомеризацией глюкозы во фруктозу с иомощью иммобилизованной глюкозоизомеразы (ГлИ), основными источниками которой служат микроорганизмы.

Рис.2 Аппаратурно-технологическая схема получения ГФС из глюкозы

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Mara Barres Banerres

Эмиссиончый спектральный анализ основан на получении и изучении спектров испускания или издучения (так наздваемых эмиссионных спектров) элементов анализируемого вещества. Он даёт возможность определить элементарный состав вещества. По положению и от посительной интенсивности отдельных линий в этих спектрах проводят качественный спектральных анализ. Сравнивая интенсивность специально выбранных спектральных линий в спектре пробы с интенсивностью тех эке линий в спектрах эталонов, определяют содержание элемента выполняя таким образом количественный спектральных анализ

В этом методе сжигают некоторос количество пробы в газовом пламени или электрической дуге. Проба при этом испаряется, молекулярные соединения диссоциируют на атомы и ноны, которые возбуждаются и дают спектры испускания (змиссионный спектр). По числу и положению линий в этих спектрах определяют, какие элементы входят в состав анализируемого образца, т.е. проводят качественный спектральный анализ

Пламенная эмиссионная спектроскопия

Появление специализированных пламенных эмиссионных спектрометров привело к обособлению методов фотометрии пламени и придало ему известную самостоятельность.

и любой другой прибор эмиссионной спектроскопии, фотометр для фотометрии пламени имеет источник возбуждения (пламенная горелка), диспергирующий элемент (обычно светофильтр) приемник света - рецептор (обычно фотоэлемент). В спектрофотометрах для пламени вместо светофильтров применяют призмы и дифракционные решетки. Анализируемый раствор вводится в пламя горелки в виде аэрозоля. При этом растворитель испаряется, а соли металла диссоциируют на атомы, которые определенной температуре возбуждаются. Возбужденные атомы, переходя в нормальное состояние, излучают свет

Спасибо за внимание!

