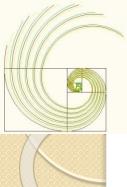


Рационализаторское предложение.

Оптимизация процесса регулировки воздушных потоков с помощью программного обеспечения и новых измерительных приборов.

Автор работы:

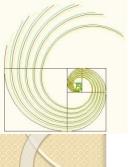

Mg.sc.ing. Иванцов Дмитрий

Борисович

Контактная информация: www.ivancovs.com, dmitrijs@ivancovs.com

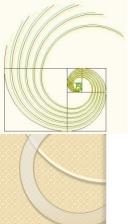
Латвия. Рига.

21.12.2010.


Аннотация.

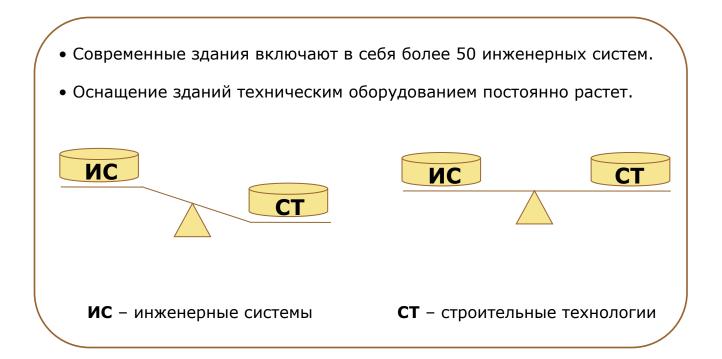
• Целевая аудитория - руководящий и инженерный состав, персонал по развитию отрасли или производства.

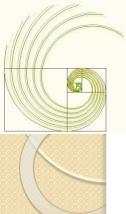
• Ключевые слова


ВЕНТИЛЯЦИОННАЯ СИСТЕМА, ЗАПУСК, НАЛАДКА, ТЕСТИРОВАНИЕ, ЭКСПЕРТИЗА, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ, НОВОЕ ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ, ПРИБОРЫ, ВОЗДУШНЫЙ ПОТОК, ПАСПОРТ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ, К-ФАКТОР, ДАВЛЕНИЕ, АВТОМАТИЗАЦИЯ ПРОЦЕССА НАЛАДКИ, ОПТИМИЗАЦИЯ, ЭФФЕКТИВНОСТЬ, ТОЧНОСТЬ, ГИБКОСТЬ, НАГЛЯДНОСТЬ, СКОРОСТЬ, ПРОСТОТА.

- Автор этой работы рассмотрит вопрос о том, как возможно повысить качество, точность и эффективнось работ по наладке и регулировке вентиляционных систем, на основе методической базы процесса наладки, используя новое измерительное оборудование и специализированное программное обеспечение, при этом понизив объём работы и расходы, связанные с этим процессом.
- Ожидаемый результат улучшить качество системы по наладке. На основе существующей нормативной и методической базы, вместе с дополнительным техническим оборудованием и программным обеспечением, достичь наглядности и точности данных в технической документации, а также снизить трудозатраты процесса.

Резюме.

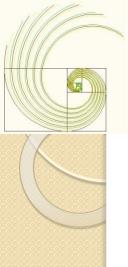

- Ключевой идеей предложения является выпуск программного обеспечения, по разработанному мною алгоритму, предназначенного для проверки, испытаний, экспертиз, пусконаладочных и регулировочных работ аэродинамических систем.
- Оптимальные результаты достигаются при использовании нового измерительного оборудования, позволяющего считывать и регистрировать данные в контексте программы.
- Основная часть ввода данных, решение аналитических задач и расчетов, будут производится за счет ресурсов персонального компьютера и программного обеспечения, а измерительные приборы, должны выполнять функцию датчика для считывания основной информации, и устройства беспроводной передачи данных.
- Данное предложение предназначено для расширения ассортимента измерительного оборудования, в сфере профессионального использования, при пуско-наладочных работах вентиляционных систем.



Введение.

На сегодняшний день темпы строительства стремительно растут. С ростом новых технологий, в строительной сфере, удельный вес инженерных систем, по отношению к строительным технологиям, постоянно растет.

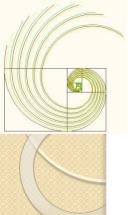
Инженерные сети и системы автоматики становятся сложнее. Для наладки и запуска их в эксплуатацию, требуются дополнительные тесты и проверки режимов работы системы.


Введение.

Для выполнения наладочных работ по старой методике, требуется большое количество времени, что негативно сказывается на конкурентоспособности услуги. Чтобы успевать в сроки без ущерба для качества, необходимо:

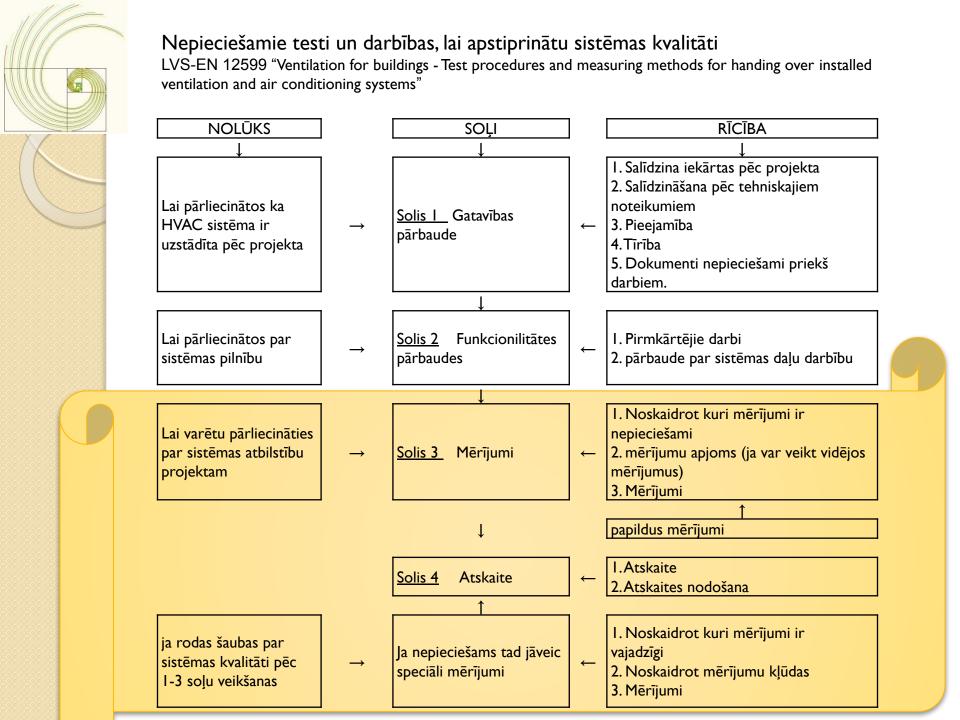
- распространить оптимизированный процесс наладки,
- ввести новые, более эффективные методы работы,
- создать измерительное оборудование, позволяющее производить эти работы.

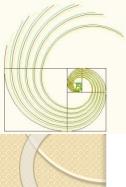
На графике, показано влияние качества регулировочных работ, на основные критерии функциональности систем.



Введение.

Для дальнейшей работы, в заданном направлении, требуется участие предприятий, занимающихся разработкой и производством измерительного оборудования.


Основная задача - поиск деловых партнеров, для реализации идеи.

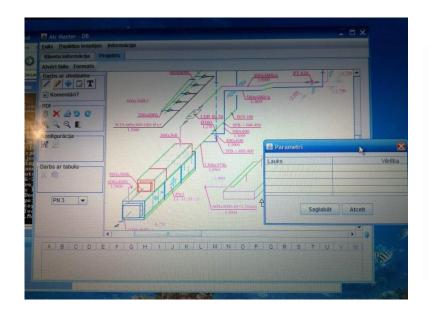


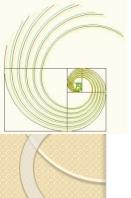
Материалы и методы.

- Алгоритм и последовательность регулировочных работ регламентируют различные стандарты и нормативы.
- Для примера возьмем стандарт LVS-EN 12599
 "Ventilation for buildings Test procedures and measuring methods for handing over installed ventilation and air conditioning systems"
- Процедура пуско-наладочных работ включает в себя целый спектр специальных тестов. В презентации мы рассмотрим только 3 и 4 разделы, которые непосредственно связанны с инструментальными замерами и работой с технической документацией.

Основные возможности программы.

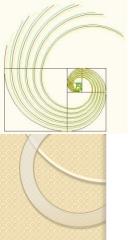
Для реализации поставленных задач, программа должна включать в себя:

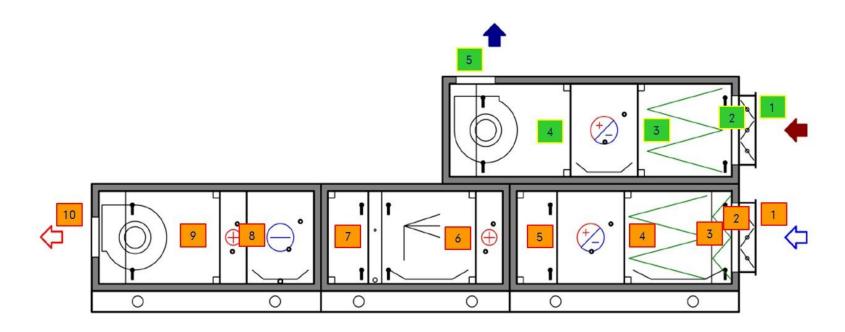

- База данных клиентов,
- База данных измерительных приборов,
- База данных воздухораспределителей с их аэродинамическими характеристиками и К-факторами,
- Стандартные формы испытаний и пояснительных записок,
- Файл помощи с описанием провидения стандартных процедур,
- Удобная работа с "touc skreen" экрана,
- Работа производится непосредственно с чертежами,
- Автоматическое заполнение таблиц технической документации,
- Построение процессов на ID-диаграмме,
- Работа с графическими файлами,
- Графический редактор чертежей,
- Возможность конвертировать файлы в "xls" "pdf" форматы,
- Встроенный конвертор физических величин,
- Вспомогательные формулы по основным расчетам,
- Гибкая настройка сложности и точности измерений,
- Распознавание и работа с измерительным оборудованием,
- Встроенные программы по регистрации данных,
- Акт дефектов,
- Контроль качества работы каждого инженера,
- Статистика времени и места работы каждого отдельного инженера,
- Расчет итоговых трудозатрат по объекту.

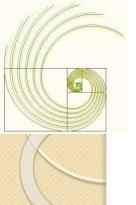

Основные возможности программы.

На данный момент разработан алгоритм работы и черновой вариант программы.

В связи с тем, что все работы оплачиваются мною, как физическим лицом, работа в данном направлении временно приостановлена, по причине недостаточного финансирования проекта.

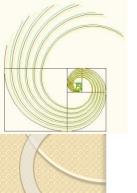



Материалы и методы.

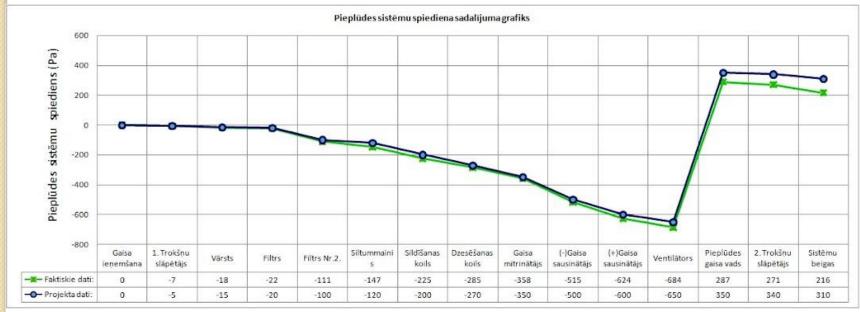

- По причинам упомянутым выше, ключевые идеи были реализованы на базе программы "Microsoft Office Excel", которые и будут приведены здесь в качестве примера (на латышском языке).
- Напомню, основной задачей, является повышение эффективности, производительности, скорости, точности и упрощение процесса регулировки вентиляционных систем.

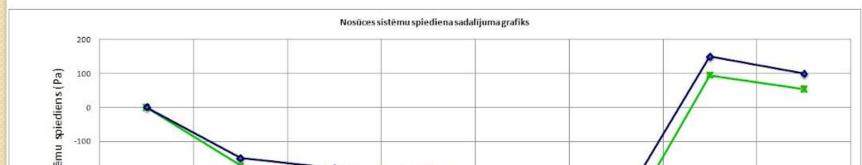
Программное обеспечение.

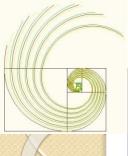
 Замеры начинаются с обследования вентиляционного оборудования.



Программное обеспечение.

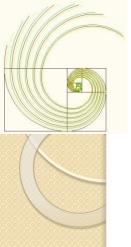

- Заполняется таблица замеров по основным значениям статическое давление, температура, относительная влажность.
- В качестве примера приведено полное обследование оборудования.
- В большинстве случаев количество замеров значительно меньше.
- Незаполненные или ненужные ячейки скрываются.


		(F	(Pa) (°C)			(%RH) Sp		Spiedier	starpība	(P	(Pa)		(°C)		(%RH)	
		pirms	pēc	pirms	pēc	pirms	pēc	ΔP fakt	ΔP proj	pirms	pēc	pirms	pēc	pirms	pēc	
	Gaisa ieņemšana	0	-7	-10,0	-10,0	70	70	-7	-5	0	-5	-20,0	-20,0	90	90	
1	1. Trokšņu slāpētājs	-7	-18	-10,0	-10,0	70	70	-11	-10	-5	-15	-20,0	-20,0	90	90	
2	Vārsts	-18	-22	-10,0	-10,0	70	70	-4	-5	-15	-20	-20,0	-20,0	90	90	
3	Filtrs	-22	-111	-10,0	-10,0	70	70	-89	-80	-20	-100	-20,0	-20,0	90	90	
4	Filtrs Nr.2.	-111	-147	-10,0	-10,0	70	70	-36	-20	-100	-120	-20,0	-20,0	90	90	
5	Siltummainis	-147	225	10.0	5.0	70	21	-78	00	120	200	20.0	E 0	00	23	
6	Sildīšanas koils	-2"						-60							1	
8	Dzesēšanas koils		Фа	ктиче	еские	2 Дан	ные	-73		роек.	тные	дань	ые			
7	Gaisa mitrinātājs	-35c						157	-						55	
8	(-)Gaisa sausinātājs	-515	-624	18,0	18,0	50	50	-109	-100	-500	-600	20,0	20,0	55	55	
9	(+)Gaisa sausinātājs	-624	-684	18,0	18,0	50	50	-60	-50	-600	-650	20,0	20,0	55	55	
10	Ventilātors	-684	287	18,0	20,0	50	50	971	1 000	-650	350	20,0	22,0	55	55	
10	Pieplūdes gaisa vads	287	271	20,0	20,0	50	50	-16	-10	350	340	22,0	22,0	55	55	
	2. Trokšņu slāpētājs	271	216	20,0	20,0	50	50	-55	-30	340	310	22,0	22,0	55	55	
	Sistēmu beigas	216	0	18,0	18,0	50	50	-216	-310	310	0	20,0	20,0	55	55	
	Nosūces sistēma					Fakt	iskie dati	<u>i:</u> Mēn	ıības	<u>Projekta</u> c	dati:					
		(Pa)		(°C)		(%RH)		Spiedie	starpība	(P	(Pa)		C)	(%RH)		
		pirms	pēc	pirms	pēc	pirms	pēc	ΔP fakt	ΔP proj	pirms	pēc	pirms	pēc	pirms	pēd	
	Nosūces sistēma	0	-171	23,0	23,0	65	65	-171	-150	0	-150	22,0	22,0	60	60	
1	1. Trokšņu slāpētājs	-171	-219	23,0	23,0	65	65	-48	-30	-150	-180	22,0	22,0	60	60	
2	Vārsts	-219	-227	23,0	23,0	65	65	-8	-5	-180	-185	22,0	22,0	60	60	
3	Filtrs	-227	-323	23,0	23,0	65	65	-96	-65	-185	-250	22,0	22,0	60	60	
4	Siltummainis	-323	-386	23,0	9,0	65	100	-63	-60	-250	-310	22,0	7,0	60	100	
5	Ventilātors	-386	95	9,0	10,0	100	100	481	460	-310	150	7,0	8,0	100	100	
5	2. Trokšņu slāpētājs	95	54	10,0	10,0	100	100	-41	-50	150	100	8,0	8,0	100	100	
	Gaisa izmešana	54	0	10,0	-10.0	100	70	-54	-100	100	0	8.0	-20.0	100	70	

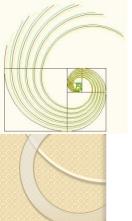


Программное обеспечение.

- Графическое отображение облегчает восприятие информации, и обнаружение ошибок.
- Построение графиков, по основным параметрам (Ра, °С, %RH), происходит автоматически.



Таблицы обследования оборудования.

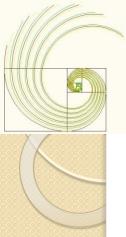

Preplūdes vārsts	2	Faktiside do	di:	4		Projekta dati:	
Varsta izmeri	500 H(mm)	500 L(mm)	0,25 9(m2)	x	500 H(mm)	500 L(mm)	0 S(m2)
Värsta elektromotors	Belimo LF 230	4 (N/m)	230 (Voit)	×	Belimo LF 230	4 (Nim)	230 (Volt)
Elektropiedzipos uzstādījumi	(A) Keversa po	gas portaja		x	(A) Keversa po	gas pozicija	
Spiediena kritoms uz vārsta	-18 pirme(Pa)	-22 pec(Pa)	-4 AP (Pa)	×	-15 pirms(Pa)	-20 pec(Pa)	-5- ДР (Pc)
Piezīmes:							
Preplődes liltru sekcija							
Pirmās pakāpes filtro sekcija	-	Fukliskie do	ati:	<u>ر پ</u>		Projekta dati:	
Filtru klase	G3	1 (1.filtra)	1 (2.filtro)		G3	1 (f.filero)	1 (2.filtrs)
(1.) Filtro izměri	550 H(mm)	550 t(mm)	30 Dnj (mm)		550 (I(mm)	550 (mm)	30 Dzij (mm)
(2.) Filtro izmēri	550 H(mm)	5UU L(mm)	450 Dzil.(mm)		550 H(mm)	500 L(mm)	45U Dzij.(mm)
Kalbatu skalits	5 (1 gab.)	1 (/ gch)			5 (t gab.)	1 (2 gao.)	
Filtra pretestiba	-22 pins(Pu)	-111 pec(Pa)	-89 AP (Pu)		-20 pirms(Pa)	-100 pec(Pa)	-80 AP (Pc)
Filtrējošā materiāla raksturojums	0,66 Σ(m2)	135 (Pa/m2)	0 (m3/hm2)		0,7 Σ(m2)	#### (Pa/m2)	0 (m3/hm2)
Piezimes:							
Otrās pakāpes hitru sekcija Filtru klase	Факт	гические ,	данные	Ť	Проек	тные дан	ные
(1.)Filtro izmēri	550 H(L 1)	550 t(mm)	450 DnJ (mm)		550 H(mm)	550 (mm)	(1)zij (mm)
(2.)Filtro izmēri	U H(mm)	U L(mm)	U Dail.(mm)		U H(mm)	U L(mm)	U Dzij.(mm)
Kabatu skaits	5 (1.fitrs)	O (2.filtrs)			5 (1.fitrs)	0 (2.fitrs)	
Filtra pretestiba	-111 piins(Pa)	-147 pēc(Pa)	-36 AP (Pu)		-100 pirms(Pa)	-120 pec(Pa)	-20 AP (Pc)
Filtrējošā materiāla raksturojums	2,48 E(m2)	-15 (Pa/m2)	(m3/hm2)		2,48 <u>∑(m2)</u>	8,1 (Pa/m2)	0 (m3/hm2)
Piezimes:							
Filtrācijas sakcijas datu kopsavilkums		Laktislae do	un:	219		Projekta dati:	
Kopējā filtra pretestība	-22 pinns(Pu)	-147 pec(Pa)	-125 AP (Pu)		-20 pirms(Pa)	-120 pec(Pa)	-100 AP (Pc)
Filtrējošā materiāla pretestība	3,1 E(m2)	39,9 (Pa/m2)	0 (m3/hm2)		3,1 ∑(m2)	31,9 (Pa/m2)	0 (m3/hm2)
Piezimes:			1111111		111-		
Pieplūdes ventilators							


Таблицы обследования оборудования.

- Повторюсь, в качестве примера, представлена максимальная версия таблицы.
- Данная форма является результатом 5 лет практической работы и оптимизации.
- С помощью этих таблиц можно проводить, как детальную экспертизу оборудования и систем, так и поверхностную экспресс проверку.
- Заполняются только необходимые поля, обозначенные желтым шрифтом.
- Темно синий интерфейс позволяет экономнее расходовать батарею компьютера.

yektā (m.5/h) jekta (m.5/h) jekta (m.5/h)	
rekter (m.34a)	
person gritarily	
Projekta (m3/h)	
jektů (m3h)	
jektā (m3/h)	
jektā (m.5/h)	
jektā (m.5/h)	
jekta (m3A)	
jektů (máh)	
8,7 (g/kg)	
1 112,2 (m3)	
3,4 (n/h)	
2,8 (nh)	
14	
55 (alv.)	
and the same	
8,7 (a/kg)	
8,7 (g/kg) 693,0 (m3)	
and the Control	
693,0 (m3)	
1	

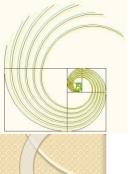
- В таблицах воздушных потоков заполняются только ячейки с желтым цветом шрифта.
- Несмотря на большое количество данных, большая часть их заполняется автоматически.
- Необходимо ввести только основные параметры точки замера.
- Изначально таблица состояла из 4 основных столбцов:
 - порядковый номер точки замера,
 - проектный расход воздуха,
 - фактический расход воздуха,
 - неувязка в процентах.



- В ходе работы, при возникновении сложных или конфликтных ситуаций, жалоб, претензий, во избежание повторных сценариев, таблицы пополнялись новыми данными.
- В существующем варианте, при добросовестном провидение работ, проблемы исключаются:
 - на стадии регулировочных работ,
 - при сдаче работ заказчику,
 - при проверке качества регулировки третьими лицами,
 - при проверке потоков в ходе послегарантийного обслуживания.

- Помимо 4 необходимых столбцов, таблица отображает целый ряд вспомогательных значений.
 - Общая неувязка по системе, зоне обслуживания и точке замера (м3/ч; %),
 - Характеристики работы вентиляторов,
 - Потери давления на фильтрах в момент регулировки,
 - Температуры и влажность воздуха (система, рабочая зона, точка замера),
 - Общее тепло и влагопритоки воздуха (система, рабочая зона, точка замера),
 - Общая площадь и объем зоны обслуживания,
 - Количество людей в зоне обслуживания,
 - Значение воздухообменов на человека, единицу площади и на единицу объема,
 - Уровень звукового давления в зоне обслуживания,
 - Разница в давлениях между различными зонами,
 - Название места замера, площадь сечения,
 - Соответствие элементов системы проектным данным,
 - Фактические показатели замеров (давление, скорость, время, температура, влажность),
 - Позиция регулировочного клапана или воздухораспределительного устройства на момент замера,
 - Возможно систематизировать данные по зонам обслуживания или по системам.

Заполнение табличных значений не требует дополнительного времени, но избавляет от его траты в дальнейшем.


Экономия времени.

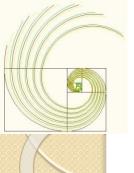
- Занесение данных замеров сразу в электронные таблицы, без посредничества бумажных записей.
- Отказ от работы с чертежами на бумаге.
- Отпадает необходимость пошагового введения параметров точки замера в измерительный прибор, необходимы только основные показатели (давление, скорость, температура влажность)
- Мгновенная ориентация в ситуации по зонам обслуживания и системе в целом.
- После окончания работ по замерам, паспорт можно сразу выводить на печать.

Экономия времени.

- Пример из практики:
- Два здания с похожей системой вентиляции.
 - Объект I.
 - Банковское здание 20 000 м2;
 - Работы велись 5 месяцев;
 - Постоянно на объекте работало 4 человека
 - Задействовано 2 полноценных комплекта измерительного оборудования.
 - Оформление паспортной документации заняло 3 человека на 10 дней (240 человеко-часов)
 - Объект 2.
 - Банковское здание 13 200 м2;
 - Работы велись 4 месяца;
 - Постоянно на объекте работал I человек
 - Задействован І комплект измерительного оборудования.
 - Оформление паспортной документации заняло у І человека 3 дня (24 человеко-часа)

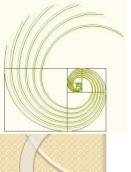
Экономия времени.

- При пересчете получается:
 - На объекте I, один человек выполнял 1000 м2 регулировки в месяц.
 - На объекте 2, один человек выполнял 3300 м2 регулировки в месяц.
- Результат:
- С использованием новой методики, человек на объекте 2 работал в (3300/1000)= 3,3 раза эффективнее.
- Использовалось на один комплект измерительного оборудования меньше.
- Оформление паспортной документации заняло в (240/14)= 10 раз меньше времени.


Инструменты.

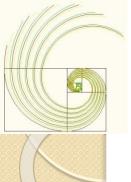
Наряду с профессионализмом, ключевую роль имеет измерительное оборудование.

Существующее измерительное оборудование, для профессиональной работы, включает в себя множество функций и позволяет подключать множество выносных датчиков и сенсоров.


Фактически в каждый измерительный прибор встроен собственный, независимый модуль обработки информации.

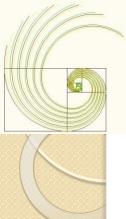
Существующие инструменты

• Преимущества:

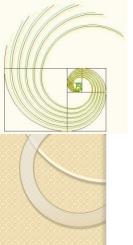

Оптимизация инструмента

Оптимизация оборудования заключается в:

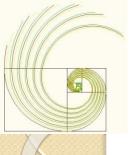
- разделение аналитического и измерительного блоков,
- увязка оборудования с программным обеспечением.

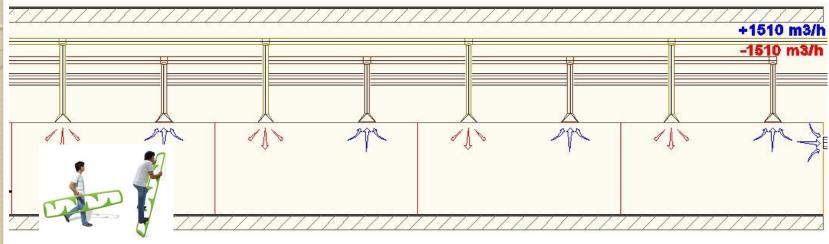


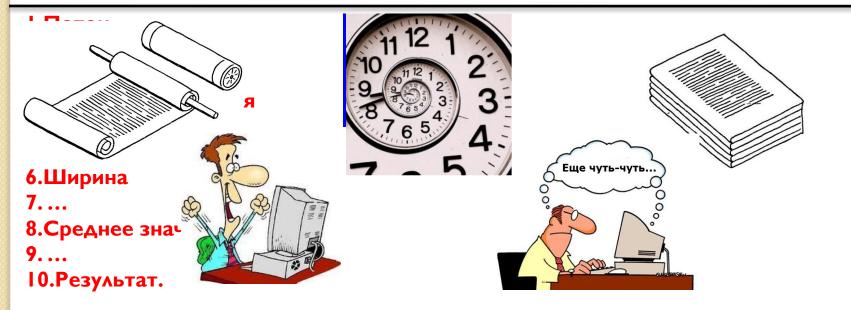
- Преимущества:
 - Упрощается и ускоряется ввод данных.
 - Данные фиксируются сразу в электронном виде.
 - Снижается количество ошибок.
 - Для проведения замеров необходимы только основные параметры (Pa, m/s, °C, %RH).


Оптимизация инструмента

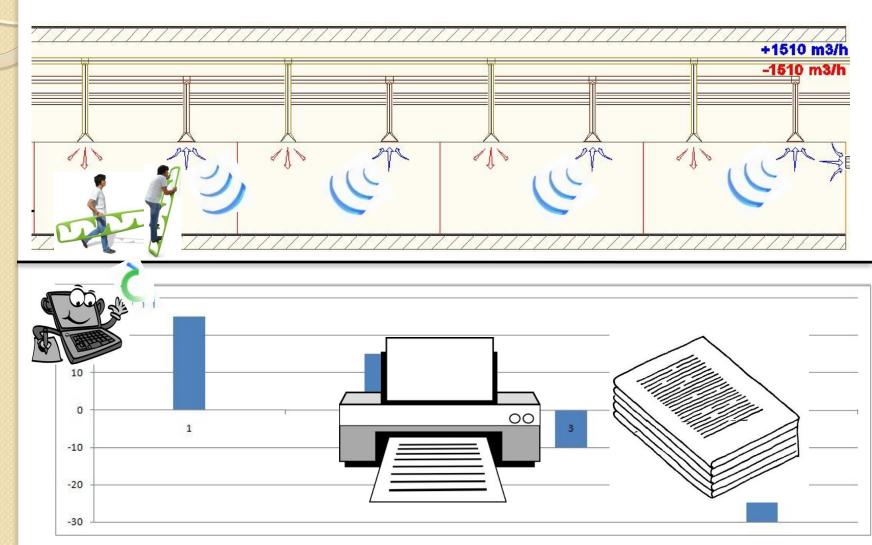
- Если вся аналитическая нагрузка ложится на персональный компьютер, то функции измерительного прибора, значительно упрощаются.
- Для такого метода регулировки необходимы функционально простые и точные приборы, оснащенные беспроводной связью с компьютером и работающие в контексте программы.
- Повторюсь, целью предложения является расширения ассортимента измерительного оборудования, а не его критика!

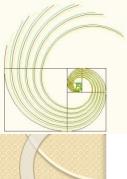

Новые измерительные приборы.



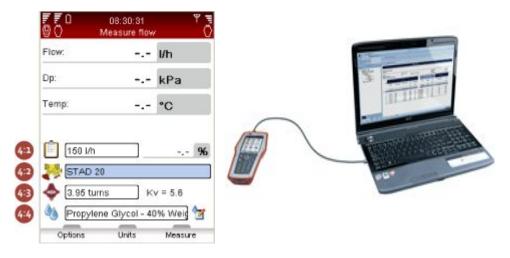

Новые измерительные приборы.

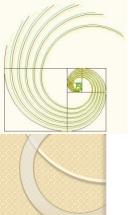
- Практическое применение подобного способа провидения работ, открывает новые возможности в сфере испытаний, диагностики и регулировки вентиляционных систем.
- Значительно снижаются трудозатраты и время проведения работ.
- Для работы потребуются только базовые знания из области аэродинамики и теплотехники.
- Регулировка методом пропорций, требующая большого количества вычислений, становится легко доступной.


Старый метод последовательного приближения.

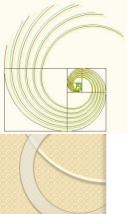


Новый метод последовательного приближения.

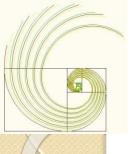



Балансировка гидравлических систем.

 Подобная система применяется при балансировке гидравлических систем.


- В отличие от вентиляционных систем, систематизировать процесс балансировки гидравлических систем значительно проще по следующим причинам:
 - Гидравлическая система имеет замкнутый контур циркуляции жидкости (подача равна возврату)
 - Регулировка осуществляется только балансировочным клапанном
 - Все регулировочные клапана имеют один принцип действия.

Выводы.


Появление новых технологий, в процессе пуско-наладки, всего лишь вопрос времени, так как их использование влечет за собой:

- Повышение конкурентоспособности,
- Повышение:
 - качества,
 - точности,
 - скорости.
- Возможность использовать новые способы наладки,
- Автоматизацию процесса,
- Снижение количества ошибок,
- Снижение трудозатрат процесса.

Заключение.

- Для того, чтобы успевать за ростом темпов в строительстве, без потери качества, необходимо оптимизировать процесс пуско-наладки вентиляционных систем.
- Заметки на чертежах и расчеты на калькуляторе не могут конкурировать с современным программным обеспечением.
- Совместная работа программного обеспечения и измерительного оборудования значительно улучшат результаты регулировочных работ.
- Для полноценной реализации новых методов, необходимо новое измерительное оборудование и программное обеспечение.

Контактная информация.

Презентацию для вас подготовил Иванцов Дмитрий Борисович

www.ivancovs.com, dmitrijs@ivancovs.com, (+371) 2 555 32 44

Спасибо за внимание!