

Авторский коллектив

Преподаватели кафедры общей физики физического факультета МГУ им. М.В. Ломоносова:

Грачев А.В., к.ф.-м.н., доцент

Погожев В.А., к.ф.-м.н., доцент

Селиверстов А.В., к.п.н., старший преподаватель, учитель физики гимназии № 1543

Боков П.Ю., к.ф.-м.н., ассистент, учитель физики гимназии № 1543

Вишнякова Е.А., к.ф.-м.н., ассистент

Шаронова Н.В., д.п.н., профессор кафедры теории и методики обучения физике МПГУ, зав. кафедрой физики гимназии №1543

Состав УМК:

Вышло в свет:

- Учебник «Физика-7»
- □ Учебник «Физика-8»
- Рабочая тетрадь к учебнику «Физика-7», части 1 и 2
- □ Рабочая тетрадь к учебнику «Физика-8», часть 1
- Программы
- □ Книга для учителя к учебнику «Физика-7»

В печати:

- Рабочая тетрадь к учебнику «Физика-8», часть 2
- Книга для учителя к учебнику «Физика-8»

Учебник «Физика-9» получил одобрения Российской Академии Наук и Российской Академии Образования

Планы:

- Тетради для лабораторных работ
- Сборники тестовых заданий
- □ Задачник
- Книга для чтения

Обложки

Имеем:

- Морально устаревший традиционный набор УМК (переиздание с 30-х годов ХХ века)
- Отсутствие идейно единого УМК для основной и полной школы
- Набор «очень простых» определений и формулировок законов
- Отсутствие понимания их физического смысла и взаимосвязи

Результат:

Представление о бессистемности, логической нестройности физики, о бесконечном разнообразии задач

Цели создания нового курса

- Сделать изучение физики более доступным
- Повысить качество знаний

- Выдержать научный подход
- Заложить правильный фундамент для изучения физики в старшей школе

Программы курса основной школы

7 - 9 классы, 210 часов (2 часа в неделю)

Не менее 8 лабораторных работ

- 4 контрольные работы
- 4 урока коррекции

Резерв – до 7 часов в каждом классе

Программы: 7 класс

Физические методы изучения природы – 4 часа

Примеры физических явлений, величин. Измерения в физике

Механические явления – 61 час

Кинематика и динамика прямолинейного движения. Силы в природе. Механическая работа и энергия. Статика. Гидростатика

Программы: 8 класс

Строение вещества и тепловые явления – 37 часа

Строение вещества, взаимодействие частиц, температура, первое начало термодинамики, понятие о фазовых переходах, тепловые машины

Электромагнитные явления – 29 часов

Электростатика, закон Кулона, электрическое поле, конденсаторы, постоянный электрический ток, магнитные явления, магнитное поле, закон электромагнитной индукции

Программы: 9 класс

- Механические явления 30 часов
 Кинематика криволинейного движения. Динамика.
 Механические колебания. Волны
- Электромагнитные колебания и волны 8 часов

Колебательный контур. Трансформатор

- Оптические явления 12 часов
 - Геометрическая оптика. Основы волновой оптики
- Квантовые явления 12 часов

Фотоэффект. Физика атома и ядра

Средняя (полная) школа

10-11 классы, 140 часов, 2 часа в неделю

Лабораторные работы – 8 часов в каждом классе

Резерв – 7 часов в каждом классе

Программы: 10 класс

 Механика криволинейного движения – 20 часов

Повторение и обобщение с учетом новых знаний по алгебре, анализу и геометрии)

- Молекулярная физика и термодинамика20 часов
- Электродинамика 21 час

Программы: 11 класс

- Механические колебания и волны. Звук– 14 часов
- Электродинамика 19 часов
- □ Оптика 14 часов
- Физика микромира и элементы астрофизики – 10 часов
- □ Обобщающее повторение 6 часов

Апробация учебника «Физика-7»

21 регион:

Астрахань, Белгород, Волгоград, Казань, Кемерово, Красноярск, Липецк, Моздок, Москва, Московская область, Нижний Новгород, Новосибирск, Оренбург, Пермь, Санкт-Петербург, Саратов, Смоленск, Тюмень, Хабаровск, Челябинск, Уфа

 Участники: СОШ, сельские школы, гимназии, лицеи, профильные школы (физ.-мат.)

Апробация: «Физика-7»

- Работа по учебнику и рабочей тетради в течение года
- Написание авторских контрольных работ (6 в течение учебного года) в экспериментальных и тестовых классах
- Встречи с авторами
- Работа с методистами
- □ Итоговый отчет

Итоги апробации: пишут учителя

Достоинства:

- Соответствие образовательному стандарту
- Точность и научность изложения материала
- Четкое выделение дополнительного материала
- Глубина вопросов и упражнений в конце параграфов учебника и рабочих тетрадей
- Выделение **итогов** каждого параграфа
- Вариативность способов решения одной и той же задачи
- Наглядность излагаемого материала (рисунки, схемы, графики)
- Обобщение темы в виде таблицы в конце главы
- Работа с текстами научного содержания
- Классификация задач: «Обгон», «Погоня»,
 «Стыковка» и т.п.
- Пошаговые алгоритмы решения задач

Алгоритмы решения задач

Для допалнительного изучения

Решение задач кинематики в общем виде. Анализ полученного результата

После того как мы с вами научились решать задачи с конкретными числовыми значениями, освоим решение задач, в которых величины, характеризующие движение тел (начальные координаты, скорости и т. п.) определены не численно, а заданы в буквенном виде и могут принимать различные значения. В этом случае говорят о решении задачи в общем виде.

≰

Рассмотрим такое решение на примере задачи «встреча».

Пусть два точечных тела 1 и 2 движутся навстречу друг другу относительно земли со скоростями \vec{v}_1 и \vec{v}_2 соответственно (рис. 33). В момент начала наблюдения расстояние между телами равно L. Необходимо определить, через какое время после начала наблюдения (когда?) произойдет встреча этих тел.

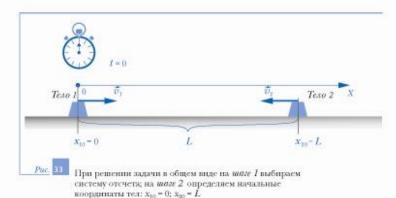
Используем известный нам метод решения задач кинематики.

 ${f HIar}$ 1. Выбор системы отсчета. В качестве начала отсчета выберем то место на дороге, где находилось в начальный момент первое тело. Координатную ось X направим от этого места вдоль дороги в направлении второго тела. Отметим, что единицы длины должны быть те же, в которых задано расстояние L между телами. Часы включим в момент начала наблюдения.

Шаг 2. Определим начальные координаты тел. Ясно, что в выбранной нами системе отсчета $x_{10} = 0$, а $x_{20} = L$.

Шаг 3. В соответствии с условием задачи в выбранной системе отсчета, связанной с дорогой, значение скорости тела 1 положительно и равно v_1 , а значение скорости тела 2 отрицательно и равно $-v_2$, так как это тело движется в отрицательном направлении оси X. Здесь v_1 и v_2 — модули соответствующих скоростей,

Шат 4. Запишем зависимости координат равномерно движущихся тел 1 и 2 от времени:


$$x_1(t) = x_{10} + v_1 \cdot t = 0 + v_1 \cdot t,$$

 $x_2(t) = x_{20} - v_2 \cdot t = L - v_2 \cdot t.$

Шаг 5. Представим в виде уравнения условие задачи — равенство координат двух тел в момент встречи:

$$x_1(t) = x_2(t).$$

Решение задач в общем виде очень распространено. Оно позволяет упростить преобразования выражений, которые могут быть довольно громоздкими, избежать промежуточных вычислений, выявить взаимосвязь между физическими величинами.

Шаг 6. Запишем вместе полученные уравнения, присвоив каждому из них номер и название:

$$x_1(t) = v_1 \cdot t$$

(1) (закон движения тела 1),

$$x_2(t) = L - v_2 \cdot t$$

(2) (закон движения тела 2),

$$x_1(t) = x_2(t)$$

(3) (условие встречи тел 1 и 2).

Шаг 7. Решение уравнений.

Для решения полученных уравнений подставим в условие встречи — уравнение (3) — выражения для $x_1(t)$ и $x_2(t)$:

$$v_1 \cdot t = L - v_2 \cdot t$$

Решим полученное уравнение:

$$v_1 \cdot t + v_2 \cdot t = L,$$

$$(v_1 ^+ v_2) \cdot t = L,$$

$$t=t_{\scriptscriptstyle B}=\;\frac{L}{v_1+v_2}\;.$$

Итак, мы получили значение момента времени встречи двух тел.

Теперь перейдем к очень важному не только для физики, но и для самых разных областей человеческого знания (экономики, бизнеса, планирования, социологии и др.) процессу. Этот процесс носит название анализа полученного результата. Он заключается в изучении зависимости между интересующими нас величинами.

1 /

Итоги в конце параграфа

Шат 7. Решение уравнений. Определить из уравнения (1) высоту, на которую поднялась ракета, мы не можем, так как неизвестно время подъема. Его мы можем найти из уравнений (2) и (3). Если мы подставим в условие окончания подъема (3) зависимость скорости от времени (2), то получим:

$$50 - 10 \cdot t = 0$$
, $10 \cdot t = 50$, $t = 5 c$.

Таким образом, ракета поднималась в течение t = 5 с. Чтобы найти ее координату в момент времени t = 5 с (т. е. максимальную высоту подъема), надо подставить найденное время подъема в закон движения (1):

$$x(t = 5 c) = (50 \cdot 5 - 5 \cdot 5^2) M = 125 M.$$

Таким образом, ракета поднялась на высоту 125 метров.

Отметим еще раз, что значение ускорения поднимающегося вверх тела в выбранной системе отсчета постоянно и равно – g. Поэтому такое движение тела, начиная с момента старта, также является свободным падением.

Итоги.

Свободное падение по вертикали является прямолинейным равноускоренным движением.

Свободно падающие тела движутся с постоянным ускорением \vec{g} , направленным *вертикально вниз.* Модуль этого ускорения $|\vec{g}| \approx 9.8 \text{ м/c}^2 \approx 10 \text{ м/c}^2$.

Если положительное направление оси X выбрать так, чтобы оно совпадало с направлением движения тела, то все задачи на свободное падение тел (так же как и задачи на любое равноускоренное прямолинейное движение) можно свести к задачам двух типов:

- 1) Задача «падение». В этом случае g>0 и значение скорости тела со временем увеличивается (это задача «разгон»).
- 2) Задача «подъем». В этом случае g < 0 и значение скорости тела со временем уменьшается (это задача «торможение»).

Задачу, в которой поднимающееся вертикально вверх тело, достигнув верхней точки, затем начинает падать (например, брошенный вверх камень), следует разбить на две задачи:

- «подъем» до верхней точки;
- 2) «падение» из верхней точки.

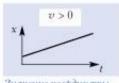
Итоги в конце главы

KNHEWATNKA

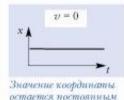
РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ

Тело за любые равные промежутки времени проходит равные расстояния в одном и том же направлении

$$x(t) = x_0 + v \cdot t$$


СКОРОСТЬ равномерного прямолинейного движения —

физическая величина, численно равная


изменению координаты тела за единицу времени

Обозначение — v, единица — м/с

При равномерном прямолинейном движении скорость постоянна

Значение координаты

чменьшается

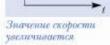
РАВНОУСКОРЕННОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ

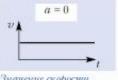
Тело за любые равные промежутки времени изменяет значение своей скорости на одну и ту же величину

$$v(t) = v_0 + a \cdot t$$

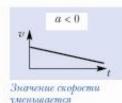
Положительное направление оси совпадает с направлением движения в начальный момент времени

СКОРОСТЬ равноускоренного прямолинейного движения

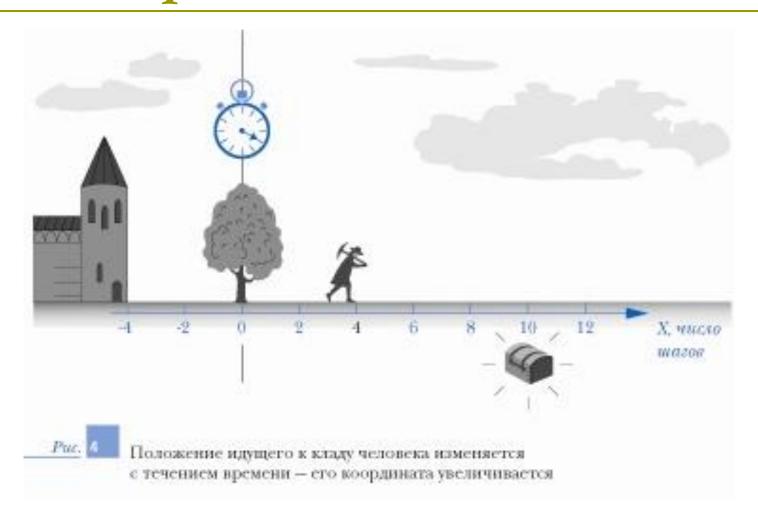

(мгновенная скорость в момент времени t) отношение перемещения, совершенного телом за достаточно малый промежуток времени Δt сразу после момента времени t, к длительности этого промежутка времени


УСКОРЕНИЕ равноускоренного прямолинейного движения физическая величина, численно равная изменению скорости тела за единицу времени

Обозначение — a, единица — M/c^2


При равноускоренном прямолинейном движении ускорение постоянно

Значение скорости остается постоянным


ПУТЬ при прямолинейном равноускоренном движении в одном направлении

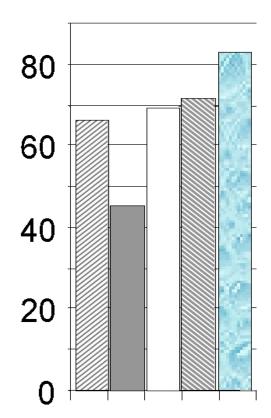
равноускоренное прямолинейное движение

УСКОРЕНИЕ СВОБОДНОГО ПАДЕНИЯ направлено вертикально вниз

 $g \approx 9.8 \text{ m/c}^2 \approx 10 \text{ m/c}^2$

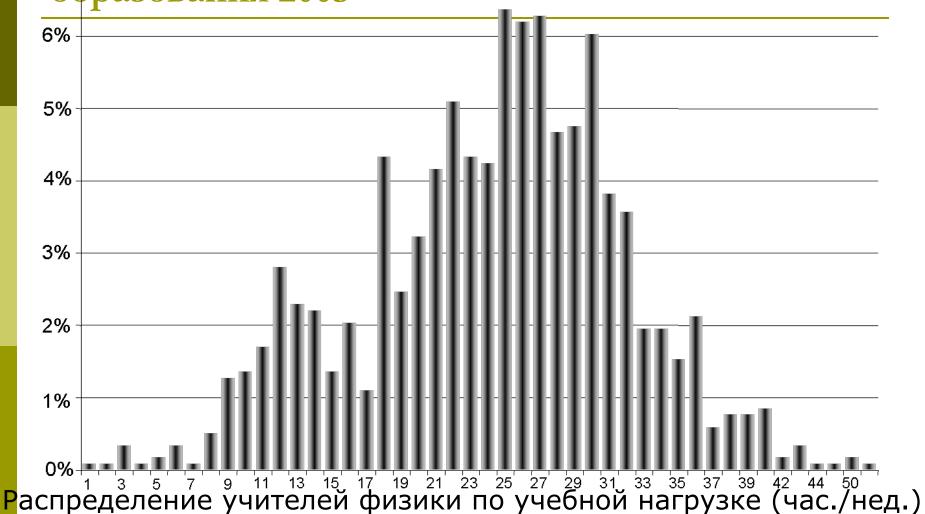
Иллюстрации

Итоги апробации: пишут учителя:

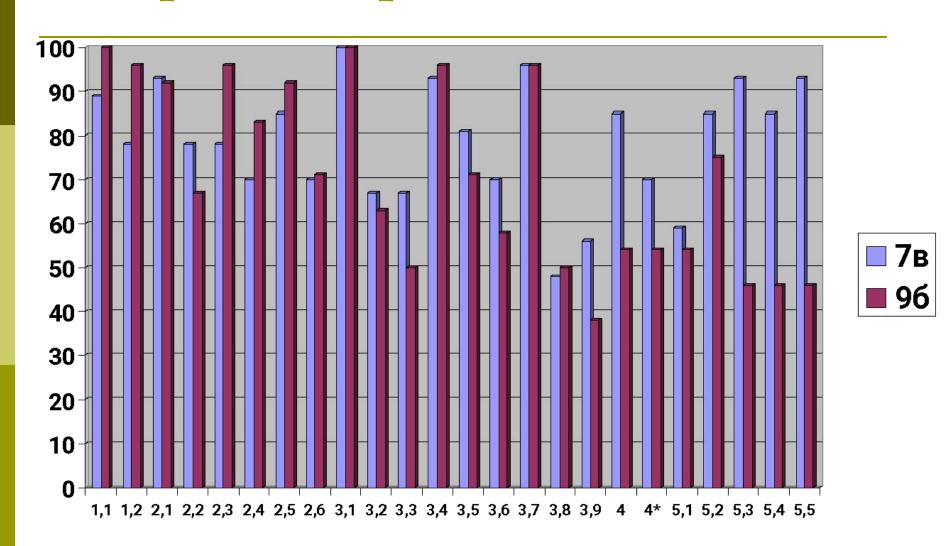

Недостатки:

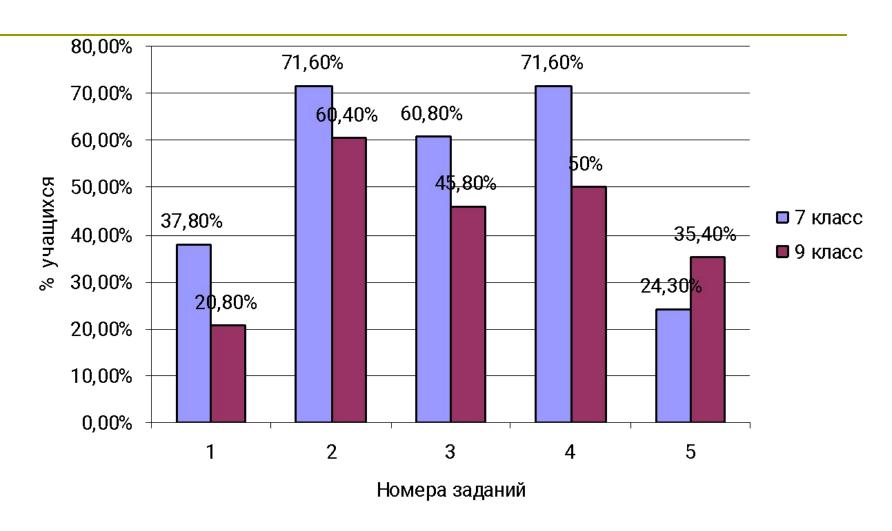
- Загруженность курса
- Большой объем отдельных параграфов
- Отсутствие рабочих тетрадей, тетрадей для лабораторных работ, методической поддержки
- Сложность изложения некоторых тем и понятий:
 «Законы Ньютона», «Импульс», «Силы упругости», «Вес тела», «Силы трения», «Внешние и внутренние силы»
- Ошибки в тексте учебника, некорректные иллюстрации, сложные речевые обороты
- Не всегда просматриваемое разделение обязательных и дополнительных единиц знаний
- Часть тем требует математического аппарата, только что появляющегося у семиклассников

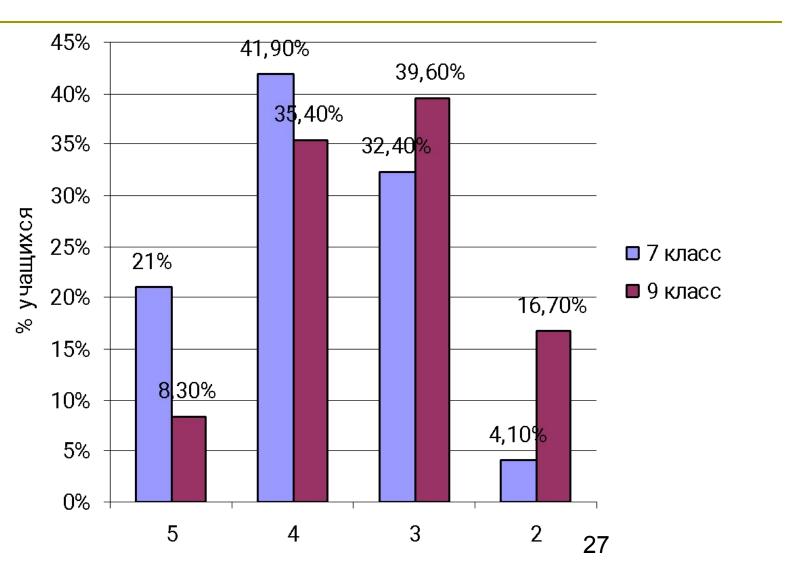
Мониторинг IV этапа эксперимента по модернизации структуры и содержания общего


-образования 2003

Обученность учащихся, занимающихся по разным программам




Мониторинг IV этапа эксперимента по модернизации структуры и содержания общего образования 2003



 Гимназия №2, г. Белгород: количество ошибок, сделанных учащимися в отдельных заданиях при выполнении контрольной работы

7 кл. 46 чел.	17	7	10	11	15	14	10
9 кл. 30 чел.	23	22	15	11	18	8	1

Итоги апробации: пишут учителя

...Однако, можно с уверенностью говорить, что основные понятия механики учениками 7 классов прочувствованы и усвоены гораздо лучше, чем учениками 9 классов...

Благодарим за внимание

e-mail: Pavel_Bokov@rambler.ru