БЕЛОРУССКИЙ ГОСУДАРТВЕННЫЙ УНИВЕРСИТЕТ

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра уравнений математической физики

Мотевич Антон Викторович

ЗАДАЧА ГУРСА ДЛЯ ДВУМЕРНОГО ГИПЕРБОЛИЧЕСКОГО ДИФФЕРЕНЦИАЛЬНО-ОПЕРАТОРНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ ОБЛАСТЯМИ ОПРЕДЕЛЕНИЯ ОПЕРАТОРОВ

Кандидатская диссертация

Руководитель: профессор кафедры уравнений математической физики, доктор физ.-мат. наук ЛОМОВЦЕВ Федор Егорович

Минск, 2010

СОДЕРЖАНИЕ

- **АКТУАЛЬНОСТЬ**
- **НЕЛЬ ИССЛЕДОВАНИЯ**
- **ОБЪЕКТ ИССЛЕДОВАНИЯ**
- **ПРЕДМЕТ ИССЛЕДОВАНИЯ**
- **НУЧНАЯ ГИПОТЕЗА**
- ОСНОВНЫЕ РЕЗУЛЬТАТЫ
- **НАУЧНАЯ НОВИЗНА**
- положения выносимые на защиту

АКТУАЛЬНОСТЬ

Математической моделью многих физических процессов являются гиперболические дифференциально-операторные уравнения второго порядка. Вопрос устойчивости этих процессов сводится к исследование о корректной разрешимости соответствующего уравнения при заданных начальных и граничных условиях.

ЦЕЛЬ ИССЛЕДОВАНИЯ:

- ✓ Обобщение известного метода сглаживающих операторов для исследования дифференциально-операторных уравнений с переменными областями определения на двумерные гиперболические дифференциально-операторные уравнения
- ✓ Доказательство существования, единственности и устойчивости сильных решений задачи Гурса для дифференциально-операторных уравнений второго порядка с переменными областями определения операторов

ОБЪЕКТ ИССЛЕДОВАНИЯ:

Двумерные гиперболические дифференциально-операторные уравнения с переменными областями определения

ПРЕДМЕТ ИССЛЕДОВАНИЯ:

Корректность задачи Гурса для двумерных гиперболических дифференциально- операторных уравнений с переменными областями определения операторных коэффициентов

НУЧНАЯ ГИПОТЕЗА:

Пусть H - гильбертово пространство со скалярным произведением (\cdot,\cdot) и нормой $|\cdot|$. На ограниченном прямоугольнике $0,T_1[\times]0,T_2[\subset R^2]$ рассматривается дифференциальное уравнение

$$\frac{\partial^2 u(t)}{\partial t_2 dt_1} + A_1(t) \frac{\partial u(t)}{\partial t_1} + A_2(t) \frac{\partial u(t)}{\partial t_2} + A(t)u(t) = f(t),$$

 $u(t_1,0) = \varphi_1(t_1), \quad u(0,t_2) = \varphi_2(t_2), \quad \varphi_1(0) = \varphi_2(0),$ где f(t) и u(t) функции переменной t со значениями в H, A(t) и $A_i(t)$ — линейные самосопряженные неограниченные операторы в H с зависящими от t соответственно областями

определения
$$D(A(t))$$
 и

$$D(A_i(t)), \quad i=1,2, \quad t=\{t_1,t_2\}.$$

Предполагаем, что операторы
$$A(t)$$
, $A_1(t)$, $A_2(t)$ удовлетворяют условиям 1- 6.

1. При каждом t для операторов A(t) выполняется оценка

 $(A(t)u,u) \ge c_1 |u|^2, \quad \forall u \in D(A(t)) \quad c_1 > 0$

2. Обратные операторы $A^{-1}(t)$ \hat{l} B (T, L(H)) операторов A(t) сильно непрерывны по t в H и при всех t имеют в H сильную частную производную, которая удовлетворяет неравенству

 $\left|\left((\partial A^{-1}(t)/\partial t_i)g,g\right)\right| \le c_2\left(A^{-1}(t)g,g\right) \quad \forall g \in H, \quad c_2 \ge 0, \ i = 1,2.$ 3. При всех t операторы $A_i(t)$ подчинены

3. При всех t операторы $A_i(t)$ подчинены квадратному корню $A^{1/2}(t)$ операторов A(t) и имеет место оценка

$$-\operatorname{Re}(A_{1}(t)v_{1}+A_{2}(t)v_{2},v_{1}+v_{2}) \leq c_{3}(|v_{1}|^{2}+|v_{2}|^{2}), c_{3}>0.$$

4. При всех t для операторов $\partial A^{-1}(t)/\partial t_i$, i = 1, 2, выполняются неравенства

$$\left|\left((\partial A^{-1}(t)/\partial t_i)g,h\right)\right| \leq c_4 \left(A^{-1}(t)h,h\right)\left|g\right| \quad \forall g,h \in H, \quad c_4 \geq 0, \ i=1,2.$$

5. Существует постоянная $c_5 > 0$ такая, что

$$-\operatorname{Re}\left(A_{1}(t)v_{1}+A_{2}(t)v_{2},A(t)(v_{1}+v_{2})\right) \leq c_{5}\left(\left|A^{1/2}(t)v_{1}\right|^{2}+\left|A^{1/2}(t)v_{2}\right|^{2}\right), \quad c_{5}>0.$$

6. При почти всех t существует ограниченная сильная смешанная производная, удовлетворяющая неравенству

$$\left|\left(\left(\partial^2 A^{-1}(t)/\partial t_1 \partial t_2\right)g,h\right)\right| \leq c_6 \left(A^{-1}(t)h,h\right)\left|g\right| \quad \forall g,h \in H, \quad c_6 \geq 0.$$

НАУЧНАЯ НОВИЗНА:

- Усовершенствованы технические приемы исследования дифференциально-операторных уравнений с переменными областями определения
- ✓Получены новые и имеющие большое научное значение результаты в теории дифференциальнооператорных уравнений

ОСНОВНЫЕ РЕЗУЛЬТАТЫ:

ЭНЕРГЕТИЧЕСКОЕ НЕРАВЕНСТВО

Теорема 1. Если выполняются условия 1 -3 и множество D(L) плотно в **H**, то имеет место следующее неравенство

$$\|u\|_{E} \mathbf{f} c_{7} \|\overline{L}u\|_{F} \|u\| D(\overline{L}), c_{7} = Exp((T_{1} + T_{2})\max\{c_{2}, 2c_{3}\}).$$

ТЕОРЕМА СУЩЕСТВОВАНИЯ

Теорема 2. Если выполняются условия предыдущей теоремы и предположения 4 - 6, то для каждого $f \in F$ сильное решение $u \in E$ поставленной задачи Гурса существует, единственно и

$$||u||_{E} \le c_7 ||f||_{F}$$
.

В области $G =]0, l[\times]0, T_1[\times]0, T_2[$ переменных x и t рассматривается гиперболическое уравнение в частных производных

$$u_{t_1t_2} + a_1(x,t)u_{xt_1} + a_2(x,t)u_{xt_2} = f(x,t)$$

с переменными по времени граничными условиями

$$u(0,t) = 0$$
, $u_x(l,t) + \beta(t)u(l,t)$, $t \in \overline{T}$,

и однородными начальными условиями

$$u(x,0,t_2) = \varphi_1(t_1), \quad u(x,t_1,0) = \varphi_2(t_2), \quad \varphi_1(0) = \varphi_2(0), x \in [0,l].$$

Здесь коэффициенты уравнения $a(x) \ge a_0 > 0$, $\forall x \in [0, l]$,

$$b_1(0) = 0$$
, $b_1(l) \ge 0$, $a(x)$, $b_1(x) \in C^{(1)}[0, l]$, $b_2(x) \in C^{(2)}[0, l]$,

$$b_3(x,t), a_i(x,t) \in C(\overline{G}), i=1,2$$
, и граничных условий

$$\beta(t) \in C^{(2)}[0,l].$$

Теорема 3. Если коэффициенты уравнения и граничных условий удовлетворяют указанным выше требованиям, то для любой функции $f \in L_2(G)$ поставленная начально-краевая задача имеет единственное сильное решение $u \in E(G)$, для которого справедлива оценка

$$\int_{G} |u_{t}(x,t)|^{2} dxdt + \int_{T} ||A^{1/2}(t)u|| dt \le c_{8} \int_{G} |f(x,t)|^{2} dxdt, c_{8} > 0.$$

ПОЛОЖЕНИЯ ВЫНОСИМЫЕ НА ЗАЩИТУ:

✓ Доказательство теорем существования, единственности и устойчивости сильных решений задачи Гурса для двумерных дифференциально-операторных уравнений второго порядка с переменными областями определения операторов

СПАСИБО ЗА ВНИМАНИЕ!